## UNIVERSITY OF SWAZILAND

## SUPPLEMENTARY EXAMINATION 2012/13

BSC./B.ED./B.A.S.S II

TITLE OF PAPER ..... CALCULUS II
COURSE NUMBER ..... M212
TIME ALLOWED : THREE (3) HOURSINSTRUCTIONS : 1. THIS PAPER CONSISTS OFSEVEN QUESTIONS.
2. ANSWER ANY FIVE QUESTIONSSPECIAL REQUIREMENTS : NONETHIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTILPERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

## QUESTION 1

(a) Suppose that $z=f(x, y), x=r \cos \theta$ and $y=r \sin \theta$.

Prove that

$$
\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}=\left(\frac{\partial f}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial f}{\partial \theta}\right)^{2}
$$

(b) Find the directional derivative of

$$
z=f(x, y)=x^{3} e^{y}+x z
$$

in the direction of the vector from $P_{1}(4,0,16)$ to $P_{2}(-2,1,4)$.

## QUESTION 2

(a) Find the volume under the surface

$$
\begin{equation*}
z=x^{4} y^{4} \tag{12}
\end{equation*}
$$

and over the circle $x^{2}+y^{2}=1$.
(b) (i) Sketch the graph of the curve

$$
r=1-\sin \theta
$$

(ii) Find the area of the region enclosed by the curve in (i).

## QUESTION 3

(a) Find the equation of the tangent surface $x y z^{3}+y z^{2}=4$ at the point $(1,2,1)$.
(b) Find the equation of the plane through the 3 points $P(1,2,3), Q(-2,0,4)$ and $R(5,2,-1)$.
(c) Evaluate

$$
\iint_{R} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y
$$

, where $R$ is the region bounded by the lines $y=x, y=-2$ and $x=0$.

## QUESTION 4

a) Given that

$$
f(x, y)=x^{2}+x y+y^{2} \sin \left(\frac{x}{y}\right)
$$

(i) Find $f_{x}, f_{y}, f_{x x}, f_{x y}$ and $f_{y y}$.
(ii) Verify that

$$
x f_{x}+y f_{y}=2 f
$$

and that

$$
x^{2} f_{x x}+2 x y f_{x y}+y^{2} f_{y y}=2 f
$$

b) Using a double integral, find the area of the region bounded by the curves

$$
x y=2, x=2 \sqrt{y} \text { and } y=4 .
$$

## QUESTION 5

a) Find and classify the critical points of the function

$$
f(x, y)=y^{3}+x^{2}-6 x y+3 x+6 y
$$

(b) Use Lagrange multipliers to find the maximum and minimum values of the function

$$
f(x, y, z)=x y z
$$

subject to

$$
x^{2}+y^{2}+z^{2}=1 .
$$

## QUESTION 6

a) Consider the cardioid

$$
r=1-\cos \theta .
$$

(i) Sketch the cardioid.
(ii) Find the length of the cardioid
b) Find an equation in polar co-ordinates for each of the following curves
(i) $2 x+3 y=3$
(ii) $x^{2}-2 x+y^{2}=0$

Evaluate the following integral
(a) $\int_{0}^{1} \int_{0}^{\sqrt{x-x^{2}}} y^{2} d y d x$
(b) $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-y^{2}-x^{2}}} x^{3} y z d x d y d z$

