University of Swaziland

 Final Examination May 2013Title of Paper : Ordinary Differential Equations
Course Number : M213
Time Allowed : Three Hours

Instructions

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions. Submit solutions to ONLY FIVE questions.
4. Show all the necessary steps.
5. A table of Laplace Transformations provided at the end of the question paper.

This paper should not be open until permission has been given by the invigilator.

Question 1

a) If $y=x$ is particular solution of the differential equation

$$
y^{\prime}=4 x^{2}(y-x)^{2}+\frac{y}{x}
$$

find its general solution.

$$
\text { Mark }=10 \mathrm{pts}
$$

b) Solve the differential equation

$$
(2 x+3 y-5) \frac{d y}{d x}+3 x+2 y-5=0
$$

$$
\text { Mark }=10 \mathrm{pts}
$$

Question 2

a) Solve

$$
\begin{aligned}
& \left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x . \\
& \quad \text { Mark }=10 \text { pts }
\end{aligned}
$$

b) Use Laplace transforms to solve

$$
\begin{aligned}
y^{\prime \prime}+2 y^{\prime}-3 y=3, y(0)=4, y^{\prime}(0)= & -7 . \\
& \text { Mark }=\mathbf{1 0 p t s}
\end{aligned}
$$

Question 3

a) Solve

$$
\begin{aligned}
& {[y(\log x)-1] y d x=x d y .} \\
& \quad \text { Mark = 10pts }
\end{aligned}
$$

b) Solve

$$
x d x+y d y=\frac{a^{2}(x d y-y d x)}{x^{2}+y^{2}}
$$

where a is a constant.

$$
\text { Mark }=10 \mathrm{pts}
$$

Question 4

a) Find the general solution of the the differential equation

$$
\begin{aligned}
y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=12 e^{2 x}+27 e^{-x} & \\
& \text { Mark }=12 \mathrm{pts}
\end{aligned}
$$

b) Investigate the existence of solutions of the initial value problem

$$
y^{\prime}=\frac{1+2 x+3 y}{2+x^{2}+y^{2}}, y(0)=0
$$

over the rectangle R: $|x| \leq 2,|y| \leq 1$.

$$
\text { Mark }=8 \mathrm{pts}
$$

Question 5

a) Solve

$$
\begin{aligned}
x^{3} \frac{d^{3} y}{d x^{3}}-x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-2 y= & \ln x \\
& \text { Mark }=12 \text { pts }
\end{aligned}
$$

b) It is given that $y_{1}=x$ and $y_{2}=\frac{1}{x}$ are two linearly independent solutions of the associated homogeneous equation of

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=x, x \neq 0 .
$$

Find a particular integral and the general solution of the equation.

$$
\text { Mark }=8 \mathrm{pts}
$$

Question 6

a) Solve

$$
\begin{aligned}
& \frac{d x}{d t}+4 x+3 y=t \\
& \frac{d y}{d t}+2 x+5 y=e^{t}
\end{aligned}
$$

b) If

$$
\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) / N=f(x)
$$

a function of x alone, then show that $e^{\int f(x) d x}$ is an integrating factor of

$$
M(x, y) d x+N(x, y) d y=0
$$

$$
\text { Mark }=8 \mathrm{pts}
$$

Question 7

Find the series solution, about $x=0$, of the equation

$$
x y^{\prime \prime}+y^{\prime}-x y=0
$$

by the Frobenius method.

$$
\text { Mark }=20 \mathrm{pts}
$$

Table of Laplace Transforms

$$
\begin{aligned}
& f(t) \\
& F(s) \\
& t^{n} \\
& \frac{n}{s^{n+1}} \\
& \frac{1}{\sqrt{t}} \quad \sqrt{\frac{\pi}{s}} \\
& e^{a t} \\
& \frac{1}{s-a} \\
& t^{n} e^{a t} \\
& \frac{n}{(s-a)^{n+1}} \\
& \frac{1}{a-b}\left(e^{a t}-e^{b t}\right) \\
& \frac{1}{(s-a)(s-b)} \\
& \frac{1}{a-b} \cdot\left(a e^{a t}-b e^{b t}\right) \\
& \frac{s}{(s-a)(s-b)} \\
& \sin (a t) \\
& \frac{a}{s^{2}+a^{2}} \\
& \cos (a t) \\
& \frac{s}{s^{2}+a^{2}} \\
& \sin (a t)-a t \cos (a t) \\
& e^{a t} \sin (b t) \\
& \frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}} \\
& \frac{b}{(s-a)^{2}+b^{2}} \\
& e^{a t} \cos (b t) \\
& \frac{s-a}{(s-a)^{2}+b^{2}} \\
& \sinh (a t) \\
& \frac{a}{s^{2}-a^{2}} \\
& \cosh (a t) \\
& \frac{s}{s^{2}-a^{2}} \\
& \sin (a t) \sinh (a t) \\
& \frac{2 a^{2}}{s^{4}+4 a^{4}}
\end{aligned}
$$

