University of Swaziland
 Supplementary Examination July 2013

Title of Paper : Ordinary Differential Equations
Course Number : M213
Time Allowed : Three Hours

Instruction

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions. Submit solutions to ONLY FIVE questions.
4. Show all the necessary steps.
5. A table of Laplace Transformations provided at the end of the question paper.

This paper should not be open until permission has been given by the invigilator.

Question 1

a) As you know the equation

$$
y^{\prime}+p(x) y=q(x) y^{n}
$$

(with dependent variable y) is non linear for $n \neq 0,1$. By changing the dependent variable reduce to a linear differential equation and find an integrating factor.

$$
\text { Mark }=10 \mathrm{pts}
$$

b) Solve the differential equation

$$
y\left(2 x y+e^{x}\right) d x=e^{x} d y
$$

$$
\mathrm{Mark}=10 \mathrm{pts}
$$

Question 2

a) If $y_{1}(x), y_{2}(x), \ldots, y_{m}(x)$ are m solutions of the linear homogeneous equation

$$
a_{0}(x) \frac{d^{n} y}{d x^{n}}+a_{1}(x) \frac{d^{n-1} y}{d x^{n-}}+. .+a_{n-1}(x) \frac{d y}{d x}+a_{n} y=0
$$

on I, then show that a linear combinations $c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{m} y_{m}(x)$, where $c_{1}, c_{2}, \ldots, c_{m}$ are constants is also a solution of the given differential equation on I.

Does this result hold for non-homogeneous equation?
Does this result hold for non-linear equation?

$$
\text { Mark }=10 \mathrm{pts}
$$

b) Solve the differential equation

$$
y^{\prime \prime}+5 y^{\prime}+4 y=x^{2}+7 x+9
$$

$$
\mathrm{Mark}=10 \mathrm{pts}
$$

Question 3

a) Solve

$$
(2 x-4 y+5) d y+(-x+2 y-3) d x=0
$$

$$
\text { Mark }=14 \mathrm{pts}
$$

b) Solve the following differential equation using two methods

$$
\left(2 x+e^{y}\right) d x+x e^{y} d y=0
$$

$$
\text { Mark }=6 \mathrm{pts}
$$

Question 4

a) Use Laplace transforms to solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=3, y(0)=y^{\prime}(0)=1
$$

$$
\text { Mark }=10 \mathrm{pts}
$$

b) Find the general solution of the equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=2 e^{x}
$$

using the method of variation of parameters.

$$
\mathrm{Mark}=10 \mathrm{pts}
$$

Question 5

a) Solve

$$
x^{2} \frac{d^{2} y}{d x^{2}}+7 x \frac{d y}{d x}+5 y=2 x^{4}
$$

$$
\text { Mark }=14 \mathrm{pts}
$$

b) Solve

$$
y d x-x d y=x y d x
$$

$$
\mathrm{Mark}=6 \mathrm{pts}
$$

Question 6

a) Find the solution of the system of equation

$$
\begin{array}{r}
3 \frac{d y}{d t}+y+3 \frac{d x}{d t}=3 t+1 \\
\frac{d y}{d t}-3 y+\frac{d x}{d t}=2 t
\end{array}
$$

$$
\text { Mark }=10 \mathrm{pts}
$$

b) Find the general solution of the differential equation

$$
y^{\prime}=3 y^{2}-(1+6 x) y+3 x^{2}+x+1
$$

if $y=x$ is the solution of the differential equation.

$$
\text { Mark }=10 \text { pts }
$$

Question 7

Find a series solution about $x=0$ of the equation

$$
x y^{\prime \prime}+y^{\prime}+x y=0
$$

by the Frobenius method.
Mark $=20 \mathrm{pts}$

Table of Laplace Transforms

$$
\begin{aligned}
& f(t) F(s) \\
& t^{n} \frac{n}{s^{n+1}} \\
& \frac{1}{\sqrt{t}} \frac{\sqrt{\frac{\pi}{s}}}{e^{a t}} \\
& t^{n} e^{a t} \frac{1}{s-a} \\
& \frac{1}{a-b}\left(e^{a t}-e^{b t}\right) \frac{n}{(s-a)^{n+1}} \\
& \frac{1}{a-b}\left(a e^{a t}-b e^{b t}\right) \frac{1}{(s-a)(s-b)} \\
& \sin (a t) \frac{s}{s^{2}+a^{2}} \\
& \cos (a t) \frac{s}{s^{2}+a^{2}} \\
& \sin (a t)-a t \cos (a t) \frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}} \\
& e^{a t} \sin (b t) \frac{b}{(s-a)^{2}+b^{2}} \\
& e^{a t} \cos (b t) \frac{s-a}{(s-a)^{2}+b^{2}} \\
& \sinh (a t) \frac{a}{s^{2}-a^{2}} \\
& \cosh (a t) \frac{s}{s^{2}-a^{2}} \\
& \sin (a t) \sinh (a t) \frac{2 a^{2}}{s^{4}+4 a^{4}} \\
& \\
& \hline
\end{aligned}
$$

