UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2012/13

BSc. II

TITLE OF PAPER	:	MATHEMATICS FOR SCIENTISTS
COURSE NUMBER	:	M215
TIME ALLOWED	;	THREE (3) HOURS
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Does the point $R(4,4)$ lie on the line through $P(1,1)$ and $Q(2,2)$?	[4]	
(b) Find the angle between $\overline{a} = \overline{i} - \overline{j}$ and $\overline{b} = \overline{j} - \overline{k}$.	[4]	
(c) Use vector product to find the area of the parallelogram spanned by the vectors $\overline{a} = (2, 3, -1)$		
and $\bar{b} = (1, 2, -4)$.	[5]	

(d) Find the volume of parallelepiped spanned by the directed segments $\overline{OA}, \overline{OB}$ and \overline{OC} , if the coordinates of A, B and C are (2, 2, 2), (0, 2, 2), (2, 0, 8), respectively [7]

QUESTION 2

(a) If $f(x) = x^3 - \dot{x}$, find all numbers in the interval (0,1) for which the mean value theorem is satisfied. [3]

(b) Compute

(i)
$$\lim_{x \to 0} \frac{\sin x - e^x + 1}{x^2},$$

(ii)
$$\lim_{x \to \infty} \frac{x^3 + 2x + 2}{2x^3 + x^2 - 3x + 1},$$

(iii)
$$\lim_{x \to 0^+} (e^x - 1) \cot x.$$
 [3,3,5]

(c) Use the quadratic approximation to compute $\sqrt{1+x}$ for small |x| and estimate the error. In particular compute $\sqrt{18}$. [6]

QUESTION 3

- (a) Find the fourth Taylor polynomial at $x_0 = 0$, for $f(x) = e^{-x}$. [4]
- (b) Find the partial derivatives of $f(x, y) = x^2 y^5$, at a point P(-1, 2). [3]

(c) Use the chain rule to evaluate f'_u and f'_v if $f(x,y) = x^2 - y^2$, $x = u^2 + v^2$, y = 2uv. [6]

(d) Verify equality of mixed derivatives theorem for

$$f(x,y) = \ln \sqrt{x^2 + y^2}.$$

[3]

(e) If
$$f(x, y) = 4 \sin 2x \cos 2y$$
, what is df ? [4]

QUESTION 4

a) For the function $f = x^3 - y^2 + yz - 12x$ find

(i) the gradient,

٩

(ii) the stationary points.	[2,2]

b) Find and classify all stationary points if $f(x, y) = x^3 + y^3 - 3x - 3y$. [4]

c) Use the method of Lagrange to find the extreme value of $f(x, y) = x^2 - y^2$, subject to constraint 2x + y = 5. [5]

(d) Find three positive numbers whose sum is 24 and whose product is as large as possible. [7]

QUESTION 5

a) Compute the volume under the graph of z = f(x, y) = x + 4y over the region 0 < x < 2,

1 < y < 2.

b) Compute
$$\iint_D x^2 y dx dy$$
 if D is the interior of the triangle with vertices $(0,0), (0,1), (1,0)$. [5]

c) Use the separation of variables to evaluate integral of $f = e^{-x} \sin 2y$,

if
$$0 < x < 1$$
, $0 < y < \frac{\pi}{4}$. [4]

d) Compute $\int_{D} \int_{D} (x^2 + y^2)^{\frac{3}{2}} dx dy$ in polar coordinates, if D is a region in the first quadrant bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$, and the coordinate axes. [7]

QUESTION 6

a) Compute
$$\int \int_{D} \int (x^2 + y^2 + z^2) dx dy dz$$
, where D is a cube
 $0 < x < 1, \quad 0 < y < 1, \quad 0 < z < 1.$ [6]
b) Pass to the spherical coordinates to evaluate $\int \int_{D} \int z^2 dx dy dz$, where D is the volume bounded
by the sphere $x^2 + y^2 + z^2 = 4$. [8]
c) Separate the variables to solve the following initial value problem,

 $y' = \frac{x^3}{y^2}, \ y = 2 \text{ when } x = 0.$ [6]

QUESTION 7

- a) Prove that if the function f(x, y) is homogeneous of degree 0, then f(x, y)is function of $\frac{y}{x}$ alone.
- b) Consider the following ODE

٠

$$3(3x^2 + y^2)dx - 2xydy = 0.$$

- (i) Show that the coefficients are the homogeneous functions.
- (ii) Solve the equation. [1,4]

c) Consider ODE

$$(3t^2\sin^2 x)dt + (2t^3\sin x\cos x - 2e^{2x})dx = 0.$$

(i) Test it for exactness,

(ii) Solve ODE.

(d) Solve the following initial value problem,

$$y'' - 2y' - 3y = 0,$$

 $y(0) = 4, y'(0) = 0$

[5]

[2,5]

[3]