# UNIVERSITY OF SWAZILAND 

## FINAL EXAMINATIONS 2012/13

BSc. II

| TITLE OF PAPER | $:$ | MATHEMATICS FOR SCIENTISTS |
| :--- | :--- | :--- |
| COURSE NUMBER | $:$ | M215 |
| TIME ALLOWED | $:$ | THREE (3) HOURS |
| • | $:$ | 1. THIS PAPER CONSISTS OF |
| INSTRUCTIONS | SEVEN QUESTIONS. |  |
|  |  | 2. ANSWER ANY FIVE QUESTIONS |
| SPECIAL REQUIREMENTS | $:$ | NONE |

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

## QUESTION 1

(a) Does the point $R(4,4)$ lie on the line through $P(1,1)$ and $Q(2,2)$ ?
(b) Find the angle between $\bar{a}=\bar{i}-\bar{j}$ and $\bar{b}=\bar{j}-\bar{k}$.
(c) Use vector product to find the area of the parallelogram spanned by the vectors $\bar{a}=(2,3,-1)$ and $\bar{b}=(1,2,-4)$.
(d) Find the volume of parallelepiped spanned by the directed segements $\overline{O A}, \overline{O B}$ and $\overline{O C}$, if the coordinates of $A, B$ and $C$ are $(2,2,2),(0,2,2),(2,0,8)$, respectively

## QUESTION 2

(a) If $f(x)=x^{3}-\dot{x}$, find all numbers in the interval $(0,1)$ for which the mean value theorem is satisfied.
(b) Compute
(i) $\lim _{x \rightarrow 0} \frac{\sin x-e^{x}+1}{x^{2}}$,
(ii) $\lim _{x+\infty} \frac{x^{3}+2 x+2}{2 x^{3}+x^{2}-3 x+1}$,
(iii) $\lim _{x \rightarrow 0^{+}}\left(e^{x}-1\right) \cot x$.
(c) Use the quadratic approximation to compute $\sqrt{1+x}$ for small $|x|$ and estimate the error. In particular compute $\sqrt{18}$.

## QUESTION 3

(a) Find the fourth Taylor polynomial at $x_{0}=0$, for $f(x)=e^{-x}$.
(b) Find the partial derivatives of $f(x, y)=x^{2} y^{5}$, at a point $P(-1,2)$.
[3]
(c) Use the chain rule to evaluate $f_{u}^{\prime}$ and $f_{v}^{\prime}$ if $f(x, y)=x^{2}-y^{2}, \quad x=u^{2}+v^{2}, \quad y=2 u v$. [6]
(d) Verify equality of mixed derivatives theorem for

$$
\begin{equation*}
f(x, y)=\ln \sqrt{x^{2}+y^{2}} \tag{3}
\end{equation*}
$$

(e) If $f(x, y)=4 \sin 2 x \cos 2 y$, what is $d f$ ?

## QUESTION 4

a) For the function $f=x^{3}-y^{2}+y z-12 x$ find
(i) the gradient,
(ii) the stationary points.
b) Find and classify all stationary points if $f(x, y)=x^{3}+y^{3}-3 x-3 y$.
c) Use the method of Lagrange to find the extreme value of $f(x, y)=x^{2}-y^{2}$, subject to constraint $2 x+y=5$.
(d) Find three positive numbers whose sum is 24 and whose product is as large as possible.

## QUESTION 5

a) Compute the volume under the graph of $z=f(x, y)=x+4 y$ over the region $0<x<2$,
$1<y<2$.
b) Compute $\iint_{D} x^{2} y d x d y$ if $D$ is the interior of the triangle with vertices $(0,0),(0,1),(1,0)$.
c) Use the separation of variables to evaluate integral of $f=e^{-x} \sin 2 y$,
if $0<x<1, \quad 0<y<\frac{\pi}{4}$.
d) Compute $\iint_{D}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d x d y$ in polar coordinates, if $D$ is a region in the first quadrant bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$, and the coordinate axes.

## QUESTION 6

a) Compute $\iint_{D} \int\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$, where $D$ is a cube
$0<x<1, \quad 0<y<1, \quad 0<z<1$.
b) Pass to the spherical coordinates to evaluate $\iiint_{D} z^{2} d x d y d z$, where $D$ is the volume bounded by the sphere $x^{2}+y^{2}+z^{2}=4$.
c) Separate the variables to solve the following initial value problem, $y^{\prime}=\frac{x^{3}}{y^{2}}, y=2$ when $x=0$.

## QUESTION 7

a) Prove that if the function $f(x, y)$ is homogeneous of degree 0 , then $f(x, y)$ is function of $\frac{y}{x}$ alone.
b) Consider the following $O D E$

$$
3\left(3 x^{2}+y^{2}\right) d x-2 x y d y=0
$$

(i) Show that the coefficients are the homogeneous functions.
(ii) Solve the equation.
c) Consider $O D E$

$$
\left(3 t^{2} \sin ^{2} x\right) d t+\left(2 t^{3} \sin x \cos x-2 e^{2 x}\right) d x=0
$$

(i) Test it for exactness,
(ii) Solve $O D E$.
(d) Solve the following initial value problem,

$$
\begin{aligned}
& y^{\prime \prime}-2 y^{\prime}-3 y=0 \\
& y(0)=4, \quad y^{\prime}(0)=0
\end{aligned}
$$

