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INSTRUCTIONS 1. 	 THIS PAPER CONSISTS OF 


SEVEN QUESTIONS. 


2. ANSWER ANY FIVE QUESTIONS 

SPECIAL REQUIREMENTS NONE 

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL 

PER.:.V1ISSION HAS BEEN GRANTED BY THE INVIGILATOR. 



QUESTION 1 


(a) Use Crammer's rule to solve the following 

2Xl + 8X2 + X3 = 10 

3X2 - Xl + 2xa = -2 

4XI + 4X2 - 5xa = 4 

[5 marks] 

(b) USe Gaussian' elimination to solve the following 

X - 2y + z = 1 

x-4y+7z = -15 

X - 4y lIz = 39 

[5 marks] 

(c) By inspection find the inverses of the following matrices 

100 0 
1 0 o \ 

040 0 
0 1 o I 

o 0 1 0 
o -3 1 

o 	0 0 1 I 

[4 marks] 

(d) Verify Cayley-Hamilton theorem for the following matrix 

A= C:) 
[6 marks] 



QUESTION 2 

(a) Let S {II, 12, 13, . .. 1 In} be a set of non-zero vector space V. Prove that S is 

linearly dependent if and only if one of the vectors Ii E s is a linear combination 

of the remaining vectors in S. 

[10 marks] 

(b) Evaluate the following determinant by expanding along the second row 

3 -2 1 


2 1 -3 


122 


[4 marks] 

(c) Prove that if A and B are both invertible matrices then AB and BA are aslo 

invertible and (AB)-1 B-1A-I and (BA)-1 = A-IB-1 [6 marks] 



QUESTION 3 

(a) For which values of k does the following system has 

(i) a unique solution 

(ii) infinitely many solutions 

(iii) no solution 

x+y-z 2 

x +2y+z = 3 

X+y+(k2-5)z = k 

[10 marks] 

(b) Give the definition of a basis of a vector space V. 	 [2 marks] 

(c) Determine whether the vectors 11 = (1,1,1) 12 (1,2,3) 13 	= (2, ,1) 

form a basis for 	R3 

[8 marks] 



QUESTION 4 

(a) Prove that if a homogeneous system has more unknowns than the number of 

equations, than it always has a non-trivial solution. 

[10 marks] 

(b) Let B = {Ul' U2, U3} and Bl = {,ll 12, 13} 

be bases in R3 where 

Ul (0,2,1) u2=(1,0,2) U3 = (1,-1,0) 

and 

II = (1,0,0) 12 = (1,1,0) 13 (1,1,1). 

Find the transition matrix from the basis Bl to the basis B. 

[10 marks] 



QUESTION 5 


(a) Show that the set V = R2 with addition defined by 

(Xl, Yl) + (X2, Y2) = (Xl + X2 + 1, YI + Y2 + 1) 

and scalar multiplication defined by 

a(x, y) = aXI a-I, aYl - a-I) form a vector space. 

[12 marks] 

(b) Let : R3 ----t fl2 defined by 

X 

T I Y _(X+Y) 
y-z 

z 

1 o 
and let B 1 1 

o o 

and B' = {( 1 ), C)} 

-1 

1 

1 

be bases for ]R3 and R2 respectively. Find the matrix fa T with respect to B 

and Bl 

[8 marks] 



QUESTION 6 


1 

(a) Find the co-ordinate vector of 5 I with respect to the basis 

9 

1 

B= o 
1 

o1 

1 2 

2 3 

[6 marks] 

(b) Find the characteristics polynomial eigenvalues and eigenvectors for the matrix 

100 

-1 3 0 

3 2 -2 

[14 marks] 



QUESTION 7 

(a) Show that in the vector space V = P2 (x), the vector / = x2 + X + 2 is a linear 

combination of the vectors 

/1 = x2 + 2x + 1 /2 = x 2 + 3 /3 = x-I 

[4 marks] 

(b) Let T : R3 _ IR3 be a linear transformation defined by 

X) lx+Y 
T I Y = x+z 

z y-z 

(i) Find the matrix A of T with respect to the standard basis. 

(ii) Find the matrix A1 of T with respect to the basis 

1 1 

B= 1 1 

1 o 

1 

o 
o 

(iii) Find a 3 x 3 transition matrix P from teh standard basis to the basis B. 

(iv) Give the relation between A adn Al 

[14 marks] 


