UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2012/13

BSc./B.Ed./B.A.S.S II/B.ENG II

TITLE OF PAPER	:	LINEAR ALGEBRA
<u>COURSE NUMBER</u>	:	M220
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWEB ANY FIVE OUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

•

(a) Find conditions λ and u for which the following system of linear equations has

(i) a unique solution

(ii) no solution

(iii) infinitely many solutions.

x + y + z = 02x + 3y + z = 1 $4x + 7y + \lambda z = u$

[10]

(b) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T(x, y) = (k - 2y, 2x + y, x + y).$$

Find the matrix of T

- (i) with respect to the standard basis
- (ii) with respect to B^1 and B where

$$B^{1} = \{(1, -1), (0, 1)\}$$
 and $B = \{(1, 1, 0)(0, 1, 1,)(1, -1, 1)\}$ [10]

(a) Determine whether the following sets of vectors in the vector space $P_2(x)$ are linearly dependent. For those that are linearly dependent express the last vector as a linear combination of the rest

(i)
$$\{2x^2 + x, x^2 + 3, x\}$$

(ii) $\{2x^2 + x + 1, 3x^2 + x - 5, x + 13\}$ [10]

(b) Let $S = \{\gamma_1, \gamma_2, \dots, \gamma_n\}$ be a set of non-zero vectors in a vector space V. Prove that S is linearly dependent if and only if one of the vectors V_j is linear combination of the proceeding vectors in S.

[10]

QUESTION 3

(a) Let V be the set of all ordered pairs of real numbers. Define addition and scaler multiplication as follows

 $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2 + 1, y_1 + y_2 + 1)$ and $\alpha(x, y) = (\alpha x_1 + \alpha - 1, \alpha y_1 + \alpha - 1)$ Show that V is a vector space [8]

(b) Find the inverse A^{-1} of the matrix A using the augmented matrix [A:I]

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$

(c) Use (b) to find a finite sequence of elementary matrices $E_1, E_2, \dots E_k$ such that $E_k E_{h-1} \dots E_2 E_1 A = I$ [8]

(a) Show that the vector (-3, 12, 12) is a linear combination of the vectors (1, 0, 2) (0, 2, 4)and (-1, 3, 2) [8]

(b) Show that the set of vectors

 $V = \{(0,2,1), (1,0,2), (1,-1,0)\}$ is a basis for R^3

[8]

(c) Determine whether the following has a non trivial solution

 $x_1 + x_2 + x_3 + x_4 = 0$ $2x_1 + x_2 - x_3 + 2x_4 = 0$ $3x_1 + 2x_2 + 2x_3 + 2x_4 = 0$

[4]

(a) Show that each eigen vector of a square matrix A is associated with only one eigenvalue

(b) Show that
$$A = \begin{pmatrix} 0 & 0 & 5 \\ 0 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

•

is a skew symmetrix

•

×

[5]

[5]

(c) Find the characteristic polynomial eigen values and eigen vectors of the following matrix

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix}$$

[10]

Let $B = \{u_1u_2, u_3\}$ and $B^1 = \{\gamma_1, \gamma_2, \gamma_3\}$ be bases in R^3 , where $u_1 = (1, 0, 0)$ $u_2 = (1, 1, 0)$ $u_3(1, 1, 1)$ $\gamma_1 = (0, 2, 1)$ $\gamma_2(1, 0, 2)$ $u_3 = (1, -1, 0)$ (a) Find the transition matrix from B^1 to B.

(b) Let $T: \mathbb{R}^3 \to 3$ be the linear transformation whose matrix with respect to the basis B is

$$\left(\begin{array}{rrrr} 3 & -6 & 9 \\ 0 & 3 & -6 \\ 0 & 0 & 0 \end{array}\right)$$

Find the matrix of T w.r.t B^1

(c) If $\begin{pmatrix} 6 \\ -3 \\ 3 \end{pmatrix}$ is the coordinates relative to *B*, find the co-ordinates relative to *B*¹ [4]

[6]

[8]

(a) Verify Cayley-Hamilton Theorem for the following matrix

$$A = \left(\begin{array}{rr} 3 & 2 \\ 1 & 4 \end{array}\right)$$

(b) By inspection, find the inverses of the following elementary matrices

(1	0	ر ۱		$\begin{pmatrix} 1 \end{pmatrix}$	0	0	0)	١
	1	0		.4	1	0	0	
	1	U n	,	0	0	1	0	
(0	U	-3	/	0	0	0	1 ,)

(c) Use Crammer's rule to solve

 $2x_1 + 8x_2 + x_3 = 10$ $2x_3 + 3x_2 - x_1 = -2$ $4x_1 + 4x_2 - 5x_3 = 4$

(d) Show that $2x^2 + 2x + 3$ is not a linear combination of

 $x^2 + 2x + 1, \quad x^2 + 3, \quad x - 1$

[5]

[5]

[5]

[5]