UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2012/13

BSc./B.Ed./B.A.S.S II/B.ENG II

TITLE OF PAPER	$:$	LINEAR ALGEBRA
COURSE NUMBER	$:$	M220
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
		2. ANSWER ANY FIVE QUESTIONS
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Find conditions λ and u for which the following system of linear equations has
(i) a unique solution
(ii) no solution
(iii) infinitely many solutions.

$$
\begin{array}{r}
x+y+z=0 \\
2 x+3 y+z=1 \\
4 x+7 y+\lambda z=u
\end{array}
$$

(b) Let $T: R^{2} \rightarrow R^{3}$ be given by

$$
T(x, y)=(k-2 y, 2 x+y, x+y)
$$

Find the matrix of T
(i) with respect to the standard basis
(ii) with respect to B^{1} and B where
$B^{1}=\{(1,-1),(0,1)\}$ and $B=\{(1,1,0)(0,1,1),(1,-1,1)\}$

QUESTION 2

(a) Determine whether the following sets of vectors in the vector space $P_{2}(x)$ are linearly dependent. For those that are linearly dependent express the last vector as a linear combination of the rest
(i) $\left\{2 x^{2}+x, x^{2}+3, x\right\}$
(ii) $\left\{2 x^{2}+x+1,3 x^{2}+x-5, x+13\right\}$
(b) Let $S=\left\{\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right\}$ be a set of non-zero vectors in a vector space V. Prove that S is linearly dependent if and only if one of the vectors V_{j} is linear combination of the proceeding vectors in S.

QUESTION 3

(a) Let V be the set of all ordered pairs of real numbers. Define addition and scaler multiplication as follows

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}+1, y_{1}+y_{2}+1\right) \text { and } \alpha(x, y)=\left(\alpha x_{1}+\alpha-1, \alpha y_{1}+\alpha-1\right)
$$

Show that V is a vector space
(b) Find the inverse A^{-1} of the matrix A using the augmented matrix $[A: I]$

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 1 \\
1 & -1 & 2
\end{array}\right)
$$

(c) Use (b) to find a finite sequence of elementary matrices $E_{1}, E_{2}, \cdots E_{k}$ such that
$E_{k} E_{h-1} \cdots E_{2} E_{1} A=I$

QUESTION 4

(a) Show that the vector $(-3,12,12)$ is a linear combination of the vectors $(1,0,2)(0,2,4)$ and ($-1,3,2$)
(b) Show that the set of vectors
$V=\{(0,2,1),(1,0,2),(1,-1,0)\}$ is a basis for R^{3}
(c) Determine whether the following has a non trivial solution

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
2 x_{1}+x_{2}-x_{3}+2 x_{4}=0 \\
3 x_{1}+2 x_{2}+2 x_{3}+2 x_{4}=0
\end{array}
$$

QUESTION 5

(a) Show that each eigen vector of a square matrix A is associated with only one eigenvalue
[5]
(b) Show that $A=\left(\begin{array}{ccc}0 & 0 & 5 \\ 0 & 0 & -1 \\ -1 & 1 & 0\end{array}\right)$
is a skew symmetrix
(c) Find the characteristic polynomial eigen values and eigen vectors of the following matrix

$$
A=\left(\begin{array}{ccc}
2 & 2 & 3 \\
1 & 2 & 1 \\
2 & -2 & 1
\end{array}\right)
$$

QUESTION 6

Let $B=\left\{u_{1} u_{2}, u_{3}\right\}$ and $B^{1}=\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ be bases in R^{3}, where
$u_{1}=(1,0,0) \quad u_{2}=(1,1,0) \quad u_{3}(1,1,1)$
$\gamma_{1}=(0,2,1) \quad \gamma_{2}(1,0,2) \quad u_{3}=(1,-1,0)$
(a) Find the transition matrix from B^{1} to B.
(b) Let $T: R^{3} \rightarrow 3$ be the linear transformation whose matrix with respect to the basis B is

$$
\left(\begin{array}{ccc}
3 & -6 & 9 \\
0 & 3 & -6 \\
0 & 0 & 0
\end{array}\right)
$$

Find the matrix of T w.r.t B^{1}
(c) If $\left(\begin{array}{c}6 \\ -3 \\ 3\end{array}\right)$ is the coordinates relative to B, find the co-ordinates relative to B^{1} [4]

QUESTION 7

(a) Verify Cayley-Hamilton Theorem for the following matrix

$$
A=\left(\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right)
$$

(b) By inspection, find the inverses of the following elementary matrices

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
4 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(c) Use Crammer's rule to solve

$$
\begin{aligned}
2 x_{1}+8 x_{2}+x_{3} & =10 \\
2 x_{3}+3 x_{2}-x_{1} & =-2 \\
4 x_{1}+4 x_{2}-5 x_{3} & =4
\end{aligned}
$$

(d) Show that $2 x^{2}+2 x+3$ is not a linear combination of

$$
\begin{equation*}
x^{2}+2 x+1, \quad x^{2}+3, \quad x-1 \tag{5}
\end{equation*}
$$

