UNIVERSITY OF SWAZILAND

.

FINAL EXAMINATIONS 2012/2013

B.Sc. / B.Ed. / B.A.S.S.II

TITLE OF PAPER	:	FOUNDATIONS OF MATHEMATICS
<u>COURSE NUMBER</u>	:	M231
TIME ALLOWED	•	THREE (3) HOURS
<u>INSTRUCTIONS</u>	:	1. THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS.
		2. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) Criticize the following definitions.

,

i.	A circle is a plane figure enclosed by one line.	[2]
ii.	An even integer is an integer that is twice an odd integer.	[2]
iii.	A quadratic polynomial is $2x^2 - 3x + 7$.	[2]
iv.	A rational number is a number that is not irrational.	[2]
v.	An algebraic number is 0.	[2]

(b) In each of the following, state whether the statement is a proposition or not. Support your answer.

i.	The square root of any integer is a non-negative real number.	[2]
ii.	If $x < 1$, then $x^2 < 1$.	[2]
iii.	The cube root of any integer is a real number.	[2]
iv.	For every angle t , $\sec^2 t - \tan^2 t = 1$.	[2]
v.	$x^2 + y^2 > 1$ (where x and y are real numbers).	[2]

- (a) Use the quantifiers for all or there is or their equivalents to make each of the following a true statement.
 - i. $(x-1)^2 = x^2 2x + 1.$ [1]
 - ii. |x| = x. [1]
 - iii Not all triangles are isosceles. [1]
 - iv. No triangles are parallelograms. [1]
- (b) Write the negation of the following definition.

The real number u is a *least upper bound* for a set S of real numbers if and only if u is an upper bound for S and \forall real numbers $\varepsilon > 0$, $\exists x \in S$ such that $x > u - \varepsilon$.

[6]

(c) A certain island has two kinds of inhabitants; knights, who always tell the truth, and their opposites, knaves, who always lie. You encounter two people, A and B. Determine, if possible, what A and B are if they address you in the ways described below. If you you cannot determine what these people are, can you draw any conclusions?

i. A says, "B is a knight," and B says, "The two of us are opposite types." [5]
ii. A says, "At least one of us is a knave," and B says nothing. [5]

(a) Translate each of the following statements into logical expressions using predicates (or statements involving variables), quantifiers and logical connectives.
i. No one is perfect. [2]
ii. Not everyone is perfect. [2]

(b) Express the statement

Some old dogs can learn new tricks

using quantifiers. Then form the negation of the statement, so that no negation is to the left of a quantifier. Next, express the negation in simple English. (Do not simply use the words "It is not the case that.") [6]

- (c) For each of the arguments below, explain which rules of inference are used at each step.
 - i. Doug, a student in this class, knows how to write programs in JAVA.
 Everyone who knows how to write programs in JAVA can get a high-paying job. Therefore, someone in this class can get a high-paying job. [3]
 - ii. Somebody in this class enjoys whale watching. Everybody who enjoys whale watching cares about ocean pollution. Therefore, there is someone in this class who cares about ocean pollution. [3]
- (d) What is meant by a *sound argument*? Consider the following argument:

All rational numbers are integers. The real number 1 is a rational number. Therefore, the real number 1 is an integer.

Is the argument valid or invalid, and is it sound or unsound? Explain. [4]

- (a) Determine whether each of the arguments below is valid or invalid. If an argument is valid, what rule of inference is used? If it is not, what logical error occurs?
 - i. If n is a real number such that n > 1, then $n^2 > 1$. Suppose that $n^2 > 1$. Then n > 1. [2]
 - ii. The number $\log_2 3$ is irrational if it is not the ratio of two integers. Therefore, since $\log_2 3$ cannot be written in the form a/b, where a and b are integers, then it is irrational. [3]
 - iii. If n is a real number with n > 3, then $n^2 > 9$. Suppose that $n^2 \le 9$. Then $n \le 3$. [3]
 - iv. If n is a real number with n > 2, then $n^2 > 4$. Suppose that $n \le 2$. Then $n^2 \le 4$. [2]

[10]

(b) Prove that $\sqrt{2}$ is irrational.

QUESTION 5

- (a) The temperature of a body is decreasing at 1% every second.
 - i. Find a formula for the temperature of the body at any time t. [8]
 - ii. If the initial temperature, at t = 0, is 300 °C, find the temperature of the body after 10 minutes. [3]
- (b) Prove that there are infinitely many primes of the form 4k + 3, where k is a nonnegative integer.

(a) State and prove the Principle of Mathematical Induction I. [6]

(b) Find a formula for the sum

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n+1)}.$$

[8]

Prove that your formula is correct.

(c) Use the Principle of Mathematical Induction II to prove that the sum of the internal angles in an n-sided polygon is (n - 2)π.

QUESTION 7

- (a) Express 1.813813813... as a fraction $\frac{m}{n}$, where $m, n, \in \mathbb{Z}$ with $n \neq 0$. [5]
- (b) Show that if a₀.a₁a₂a₃... and b₀.b₁b₂b₃... are two different decimal representations of the same real number, then one of them ends in 000... and the other in 999....
- (c) Prove that a real number is rational if and only if its decimal representation is repeating.

END OF EXAMINATION