UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2012/2013

B.Sc. / B.Ed. / B.A.S.S. II

TITLE OF PAPER	$:$	DYNAMICS I
COURSE NUMBER	$:$	M255
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1.THIS PAPER CONSISTS OF SEVEN QUESTIONS.
SPECIAL REQUIREMENTS	$:$	2. ANSWER ANY FIVE QUESTIONS

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Find parametric equations for the line of intersection of the planes $2 x+y+z=4$ and $3 x-y+z=3$.
(b) Compute the acute angle between the lines $3 x-4 y+7=0$ and $x+y+1=0 .[4]$
(c) Find the distance between the plane $2 x-2 y+z=4$ and the point $S(1,2,3)$.[4]
(d) Prove that the vector $\mathbf{v}=A \hat{\mathbf{i}}+B \hat{\mathbf{j}}+C \hat{\mathbf{k}}$ is perpendicular to the plane $A x+$ $B y+C z=D$, where $A \neq 0, B \neq 0$, and $C \neq 0$ are constants.
(e) Find the component of the force $\mathbf{F}=6 \hat{\mathbf{i}}+8 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ in the direction of the displacement $\overrightarrow{\mathbf{P Q}}$, where $P(3,2,0)$ and $Q(4,6,7)$ are points in space. What is the work done by the force \mathbf{F} in moving an object over the displacement $\overrightarrow{\mathbf{P Q}}$? $[4]$

QUESTION 2

(a) Find the equation for the plane through $P(1,0,-1), Q(0,2,0)$, and $R(1,2,3) \cdot[5]$
(b) Show that the planes $5 x+y-z=-3$ and $5 x+y-7=6$ are parallel, and find the distance between them.
(c) Let \mathbf{u} and \mathbf{v} be vectors in space. Prove that $\mathbf{u} \times \mathbf{v}$ is perpendicular to the plane containing \mathbf{u} and \mathbf{v}.
(d) Given that $\mathbf{F}(t)=e^{2 t} \mathbf{u}+\mathrm{e}^{3 t} \mathbf{v}$, where \mathbf{u} and \mathbf{v} are constant vectors, show that $\mathbf{F}^{\prime \prime}(t)-5 \mathbf{F}^{\prime}(t)+6 \mathbf{F}(t)=0$.
(e) If $\mathbf{u}^{\prime \prime}(t)=6 t \hat{\mathbf{i}}-12 t^{2} \hat{\mathbf{j}}+6 \hat{\mathbf{k}}, \mathbf{u}^{\prime}(0)=7 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$, and $\mathbf{u}(0)=5 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$, find $\mathrm{u}(t)$.

QUESTION 3

(a) In spherical coordinates (ρ, ϕ, θ), the position vector of an arbitrary point (x, y, z) is given by

$$
\mathbf{r}=\rho \sin \phi \cos \theta \hat{\mathbf{i}}+\rho \sin \phi \sin \theta \hat{\mathbf{j}}+\rho \cos \phi \hat{\mathbf{k}} .
$$

Find:
(i) $\hat{\rho}$;
(ii) $\hat{\phi}$;
(iii) $\hat{\theta}$; and
(iv) the velocity vector \mathbf{v}
for any particle moving in this coordinate system.
(b) Let $a(t)=a_{1}(t) \hat{\mathbf{i}}+a_{2}(t) \hat{\mathbf{j}}+a_{3}(t) \hat{\mathbf{k}}$ be a differentiable vector function, and let $\phi(t)$ be a differentiable scalar function. Prove that

$$
\frac{\mathrm{d}(\phi \mathbf{a})}{\mathrm{d} t}=\phi \frac{\mathrm{da}}{\mathrm{~d} t}+\mathbf{a} \frac{\mathrm{d} \phi}{\mathrm{~d} t} .
$$

(c) If $\mathbf{r}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$ and $r=|\mathbf{r}|$, show that:
(i) $\nabla r=\frac{\mathbf{r}}{r}$,
(ii) $\nabla^{2}(\log r)=\frac{1}{r^{2}}$.

QUESTION 4

(a) A particle starts from rest and moves in a straight line with acceleration $\left(16-2 v^{2}\right)$, where v is its speed. Show that the particle has terminal velocity $V=$ $\sqrt{8}$, and find an expression for v in terms of the distance traveled.
(b) A body of unit mass moving in a straight line is projected with speed u from a point at a distance d from the origin. It is acted upon by a force $\frac{k}{x}$, where k is a constant and x is the distance from the origin. Show that

$$
x=d e^{\frac{v^{2}-v^{2}}{2 k}}
$$

where v is the body's speed.
(c) A particle drops from rest under gravity in a medium which exerts a resistive force of $k v$ per unit mass, where k is a constant and v is the speed. Show that the terminal velocity is given by

$$
V=\frac{g}{k} .
$$

Also show that the speed v and the distance traveled x at any time t are given by

$$
v=V\left(1-e^{\frac{-g t}{V}}\right)
$$

and

$$
x=V t-\left(\frac{V^{2}}{g}\right)\left(1-e^{\frac{-g t}{V}}\right) .
$$

QUESTION 5

(a) Let $x(t)=c_{1} \cos \left(\omega t+\phi_{1}\right)$ and $y(t)=c_{2} \cos \left(\omega t+\phi_{2}\right)$ be harmonic functions in standard form with the same angular frequency ω. What do we mean by x leads y, and when does $x \operatorname{lag} y$?
(b) State whether x leads or lags y in each of the following:
(i) $x=2 \cos \left(2 t .+\frac{\pi}{4}\right), y=3 \cos \left(2 t+\frac{9 \pi}{2}\right)$
(ii) $x=\cos (3 t), y=\sin (3 t)$.
(c) Express $A \cos (\omega t)+B \sin (\omega t)$ in the standard form $C \cos (\omega t+\phi)$ when $A=3^{\frac{1}{2}}$ and $B=-1$.
(d) Find the current $I(t)$ in an RLC-circuit with $R=100 \mathrm{ohms}, L=0.1$ henries, and $C=10^{-3}$ farads, which is connected to a source of voltage $E(t)=$ $155 \sin 377 t$, assuming zero charge and current when $t=0$.

QUESTION 6

A projectile of mass m is launched with initial speed U at an angle θ with the horizontal. If the projectile has acting upon it a force due to air resistance equal to $-\beta \mathbf{v}$, where β is a positive constant and \mathbf{v} is the instantaneous velocity, prove that the position at any time is given by

$$
\begin{equation*}
\mathbf{r}=\frac{m U}{\beta}(\cos \theta \mathbf{j}+\sin \theta \mathbf{k})\left(1-e^{-\beta t / m}\right)-\frac{m g}{\beta}\left(t+\frac{m}{\beta} e^{-\beta t / m}-\frac{m}{\beta}\right) \mathbf{k} \tag{20}
\end{equation*}
$$

QUESTION 7

(a) A particle of unit mass moves subject to a central force. Determine the law of force if the path followed by the particle is $r=a \cos \theta$, where a is a constant.[8]
(b) Suppose that a particle mass m is acted upon by a force $\alpha r^{-2}+\beta r^{-3}$ per unit mass (where ($\left.\beta=\frac{1}{2} \alpha a\right)$) directed towards the origin $r=0$ of an inertial frame. Suppose, also, that at $\theta=0$ and $t=0$, measurements of distance and velocity of the particle show that it is at distance a from the origin moving with velocity $\sqrt{\alpha / a}$ in a direction perpendicular to the radius vector. If $u=1 / r$, prove that

$$
u=\frac{2}{a}-\frac{1}{a} \cos \frac{\theta}{\sqrt{2}} .
$$

