UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2012/2013

B.Sc. / B.Ed. / B.A.S.S. II

TITLE OF PAPER	:	DYNAMICS I
COURSE NUMBER	:	M255
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- (a) Find parametric equations for the line of intersection of the planes 2x+y+z = 4 and 3x y + z = 3.
 [4]
- (b) Compute the acute angle between the lines 3x 4y + 7 = 0 and x + y + 1 = 0.[4]
- (c) Find the distance between the plane 2x 2y + z = 4 and the point S(1, 2, 3).[4]
- (d) Prove that the vector $\mathbf{v} = A\hat{\mathbf{i}} + B\hat{\mathbf{j}} + C\hat{\mathbf{k}}$ is perpendicular to the plane Ax + By + Cz = D, where $A \neq 0$, $B \neq 0$, and $C \neq 0$ are constants. [4]
- (e) Find the component of the force $\mathbf{F} = 6\hat{\mathbf{i}} + 8\hat{\mathbf{j}} 2\hat{\mathbf{k}}$ in the direction of the displacement $\overrightarrow{\mathbf{PQ}}$, where P(3, 2, 0) and Q(4, 6, 7) are points in space. What is the work done by the force \mathbf{F} in moving an object over the displacement $\overrightarrow{\mathbf{PQ}}$?[4]

QUESTION 2

- (a) Find the equation for the plane through P(1, 0, -1), Q(0, 2, 0), and R(1, 2, 3).[5]
- (b) Show that the planes 5x + y z = -3 and 5x + y 7 = 6 are parallel, and find the distance between them.
- (c) Let u and v be vectors in space. Prove that u × v is perpendicular to the plane containing u and v. [4]
- (d) Given that $\mathbf{F}(t) = e^{2t}\mathbf{u} + e^{3t}\mathbf{v}$, where **u** and **v** are constant vectors, show that $\mathbf{F}''(t) 5\mathbf{F}'(t) + 6\mathbf{F}(t) = \mathbf{0}.$ [4]
- (e) If $\mathbf{u}''(t) = 6t\,\hat{\mathbf{i}} 12t^2\,\hat{\mathbf{j}} + 6\hat{\mathbf{k}}, \,\mathbf{u}'(0) = 7\hat{\mathbf{i}} 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}, \text{ and } \mathbf{u}(0) = 5\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + 4\hat{\mathbf{k}}, \text{ find}$ $\mathbf{u}(t).$ [3]

(a) In spherical coordinates (ρ, ϕ, θ) , the position vector of an arbitrary point (x, y, z)is given by

$$\mathbf{r} = \rho \sin \phi \cos \theta \hat{\mathbf{i}} + \rho \sin \phi \sin \theta \hat{\mathbf{j}} + \rho \cos \phi \hat{\mathbf{k}}.$$

Find:

(i) $\hat{\rho}$; [2]

(ii)
$$\hat{\phi}$$
; [2]

- (iii) $\hat{\theta}$; and [2]
- (iv) the velocity vector \mathbf{v} [3]

for any particle moving in this coordinate system.

(b) Let $a(t) = a_1(t)\hat{\mathbf{i}} + a_2(t)\hat{\mathbf{j}} + a_3(t)\hat{\mathbf{k}}$ be a differentiable vector function, and let $\phi(t)$ be a differentiable scalar function. Prove that

$$\frac{\mathrm{d}(\phi \mathbf{a})}{\mathrm{d}t} = \phi \frac{\mathrm{d}\mathbf{a}}{\mathrm{d}t} + \mathbf{a} \frac{\mathrm{d}\phi}{\mathrm{d}t}.$$

[4]

- (c) If $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ and $r = |\mathbf{r}|$, show that:
 - (i) $\nabla r = \frac{\mathbf{r}}{r}$, (ii) $\nabla^2(\log r) = \frac{1}{r^2}$. [3,4]

- (a) A particle starts from rest and moves in a straight line with acceleration $(16-2v^2)$, where v is its speed. Show that the particle has terminal velocity $V = \sqrt{8}$, and find an expression for v in terms of the distance traveled. [6]
- (b) A body of unit mass moving in a straight line is projected with speed u from a point at a distance d from the origin. It is acted upon by a force $\frac{k}{x}$, where k is a constant and x is the distance from the origin. Show that

$$x = de^{\frac{u^2 - v^2}{2k}},$$

where v is the body's speed.

(c) A particle drops from rest under gravity in a medium which exerts a resistive force of kv per unit mass, where k is a constant and v is the speed. Show that the terminal velocity is given by

$$V=\frac{g}{k}.$$

Also show that the speed v and the distance traveled x at any time t are given by

$$v = V \left(1 - e^{\frac{-gt}{V}} \right)$$

and

$$x = Vt - \left(\frac{V^2}{g}\right) \left(1 - e^{\frac{-gt}{V}}\right).$$

[9]

[5]

- (a) Let x(t) = c₁ cos(ωt + φ₁) and y(t) = c₂ cos(ωt + φ₂) be harmonic functions in standard form with the same angular frequency ω. What do we mean by x leads y, and when does x lag y?
- (b) State whether x leads or lags y in each of the following:

(i)
$$x = 2\cos(2t + \frac{\pi}{4}), y = 3\cos(2t + \frac{9\pi}{2})$$
 [2]

(ii)
$$x = \cos(3t), y = \sin(3t).$$
 [2]

- (c) Express $A\cos(\omega t) + B\sin(\omega t)$ in the standard form $C\cos(\omega t + \phi)$ when $A = 3^{\frac{1}{2}}$ and B = -1. [2]
- (d) Find the current I(t) in an RLC-circuit with R = 100 ohms, L = 0.1 henries, and $C = 10^{-3}$ farads, which is connected to a source of voltage $E(t) = 155 \sin 377t$, assuming zero charge and current when t = 0. [13]

A projectile of mass m is launched with initial speed U at an angle θ with the horizontal. If the projectile has acting upon it a force due to air resistance equal to $-\beta \mathbf{v}$, where β is a positive constant and \mathbf{v} is the instantaneous velocity, prove that the position at any time is given by

$$\mathbf{r} = \frac{mU}{\beta} (\cos\theta \mathbf{j} + \sin\theta \mathbf{k}) (1 - e^{-\beta t/m}) - \frac{mg}{\beta} (t + \frac{m}{\beta} e^{-\beta t/m} - \frac{m}{\beta}) \mathbf{k}.$$
[20]

QUESTION 7

- (a) A particle of unit mass moves subject to a central force. Determine the law of force if the path followed by the particle is $r = a \cos \theta$, where a is a constant.[8]
- (b) Suppose that a particle mass m is acted upon by a force $\alpha r^{-2} + \beta r^{-3}$ per unit mass (where $(\beta = \frac{1}{2}\alpha a)$) directed towards the origin r = 0 of an inertial frame. Suppose, also, that at $\theta = 0$ and t = 0, measurements of distance and velocity of the particle show that it is at distance a from the origin moving with velocity $\sqrt{\alpha/a}$ in a direction perpendicular to the radius vector. If u = 1/r, prove that

$$u = \frac{2}{a} - \frac{1}{a}\cos\frac{\theta}{\sqrt{2}}$$

[12]

END OF EXAMINATION