UNIVERSITY OF SWAZILAND

÷ .,

SUPPLEMENTARY EXAMINATIONS 2012/2013

B.Sc. / B.Ed. / B.A.S.S. II

TITLE OF PAPER	:	DYNAMICS I
COURSE NUMBER	•	M255
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF SEVEN QUESTIONS.
		2. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- (a) Find unit vectors tangent and normal to the curve $f(x) = \sqrt{x^2 + 4}$ at the point (-2, 2). [5]
- (b) Determine whether the lines

$$L_1: \quad x = 3 + 2t, \quad y = 2 + t, \quad z = t; \quad -\infty < t < \infty$$

and

 $L_2: \quad x = 1, \quad y = s, \quad z = -2 + s; \quad -\infty < t < \infty$

[4]

intersect, and if they do, find their point(s) of intersection.

- (c) Compute the acute angle between the lines 3x 4y + 7 = 0 and x + y + 1 = 0.[4]
- (d) A girl is pulling a sled horizontally in a straight line over a distance of 100 m by exerting a force of 50 N. The rope she is pulling on is at an angle of 45 deg above the horizontal. How much work has she done? [4]

(e) Evaluate the limit
$$\lim_{t \to 1} \left(\frac{1}{t} \hat{\mathbf{i}} + \frac{\ln t}{t^2 - 1} \hat{\mathbf{j}} + \frac{t - 1}{t^2 - 1} \hat{\mathbf{k}} \right).$$
 [3]

(a) Let \mathbf{u} and \mathbf{v} be vectors in space. Prove the *Pythagorean Principle*,

$$|\mathbf{u} + \mathbf{v}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2 \iff \mathbf{u} \cdot \mathbf{v} = 0.$$

[5]

- (b) Find the equation of the plane passing through the point (0, 0, 2) and perpendicular to the vector \hat{i} . [5]
- (c) Find the angle between the planes 3x + 4y = 0 and 2x + y 2z = 5. [4]
- (d) Given the points P(2,1,-1), Q(3,0,2), R(4,-2,1), and S(5,-3,0), find the volume of the parallelepiped having adjacent sides PQ, PR, and PS. [3]
- (e) Given that $\mathbf{r}'(t) = [t e^{-t^2}, -e^{-t}, 1]$ and $\mathbf{r}(0) = [\frac{1}{2}, -1, 1]$, find $\mathbf{r}(t)$ at any time t. [3]

(a)	the velocity vector \mathbf{v}	[1]
(b)	the acceleration vector \mathbf{a}	[1]
(c)	the speed	[2]
(d)	the unit tangent vector $\widehat{\mathbf{T}}$	[2]
(e)	the curvature	[5]
(f)	the unit normal vector $\widehat{\mathbf{N}}$	[2]
(g)	the unit binormal vector $\widehat{\mathbf{B}}$	[3]
(h)	the tangential component of acceleration	[2]
(i)	the normal component of acceleration	[2]

(a) A car with initial speed u accelerates uniformly over a distance of 2s which it covers in time t_1 . It is then stopped by being retarded uniformly to rest over a distance s, which it covers in time t_2 . Prove that

$$\frac{u}{2s} = \frac{2}{t_1} - \frac{1}{t_2}.$$
[4]

- (b) A particle of unit mass is thrown vertically upwards with initial speed V. The air resistance at speed v is kv^2 per unit mass, where k is a constant.
 - (i) Show that H, the maximum height reached, is given by

$$H = \frac{1}{2k} \ln\left(\frac{g+kV^2}{g}\right),$$

and that the time T taken to reach this height is

$$T = \frac{1}{\sqrt{gk}} \tan^{-1} \left[\left(\frac{k}{g} \right)^{\frac{1}{2}} V \right].$$

(ii) Show that the particle return to the point of projection with speed v^* , where

$$v^* = V\left(\frac{g}{g+kV^2}\right)^{\frac{1}{2}}.$$
[6]

[10]

- (a) From a point O, at height h above sea level, a particle is projected under gravity with a velocity of magnitude $\frac{3}{2}\sqrt{gh}$. Find the two possible angles of projection if the particle strikes the sea at horizontal distance 3h from 0. [10 marks]
- (b) A particle is projected with velocity u from a point O in a vertical plane through the line of greatest slope of a plane inclined at an angle -β to the horizontal. After time T, the particle strikes the inclined plane at the point P, at a distance R from O. If u makes an angle α with the horizontal, and if |u| = u, show that:

(i)
$$T = \frac{2u\sin(\alpha + \beta)}{g\cos\beta}$$
 and $R = \frac{u^2[\sin(2\alpha + \beta) + \sin\beta]}{g\cos^2\beta};$

(ii) for constant u and β , R is maximum when $\alpha = \frac{\pi}{4} - \frac{\beta}{2}$. [8,2]

(a) The position of a particle moving along the x axis is determined by the equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 4\frac{\mathrm{d}x}{\mathrm{d}t} + 8x = 20\cos(2t).$$

If the particle starts from rest at x = 0, find

- (i) x as a function of t,
- (ii) the amplitude, period, and frequency after a long time. [7,3]
- (b) The weight on a vibrating spring undergoes forced vibrations according to the equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 4x = 8\sin(\omega t),$$

where x is the displacement from the equilibrium position and ω is a constant. If x = 0 and $\frac{dx}{dt} = 0$ when t = 0, find:

- (i) x as a function of t,
- (ii) the period of the external force for which resonance occurs. [8,2]

A comet moves in a plane under the gravitational attraction of the sun, which is situated at the origin O. Given that the attractive force between the sun and the comet can be written as

$$f(r) = -\frac{GMm}{r^2};$$

- (a) Derive the equations
 - (i) $\ddot{r} r\dot{\theta}^2) = -\frac{GM}{r^2};$ [6]

(ii)
$$r^2\dot{\theta} = h,$$
 [4]

where r and θ are plane polar coordinates, h is a constant, G is the gravitational constant, M is the mass of the sun, and m is the mass of the moon.

(b) Suppose that at the initial instant, $\theta = 0$, the comet is at distance d from the sun and is moving with speed v in a direction perpendicular to the radius vector from the sun. Show, by means of the substitution $r = \frac{1}{u}$, that the equation of the particle is

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + u = \frac{GM}{d^2v^2}.$$

[10]

END OF EXAMINATION