UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2012/2013

B.Sc. / B.Ed. / B.A.S.S. II

TITLE OF PAPER	$:$	DYNAMICS I
COURSE NUMBER	$:$	M255
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Find unit vectors tangent and normal to the curve $f(x)=\sqrt{x^{2}+4}$ at the point $(-2,2)$.
(b) Determine whether the lines

$$
L_{1}: \quad x=3+2 t, \quad y=2+t, \quad z=t ; \quad-\infty<t<\infty
$$

and

$$
L_{2}: \quad x=1, \quad y=s, \quad z=-2+s ; \quad-\infty<t<\infty
$$

intersect, and if they do, find their point(s) of intersection.
(c) Compute the acute angle between the lines $3 x-4 y+7=0$ and $x+y+1=0$.[4]
(d) A girl is pulling a sled horizontally in a straight line over a distance of 100 m by exerting a force of 50 N . The rope she is pulling on is at an angle of 45 deg above the horizontal. How much work has she done?
(e) Evaluate the limit $\lim _{t \rightarrow 1}\left(\frac{1}{t} \hat{\mathbf{i}}+\frac{\ln t}{t^{2}-1} \hat{\mathbf{j}}+\frac{t-1}{t^{2}-1} \hat{\mathbf{k}}\right)$.

QUESTION 2

(a) Let \mathbf{u} and \mathbf{v} be vectors in space. Prove the Pythagorean Principle,

$$
|\mathbf{u}+\mathbf{v}|^{2}=|\mathbf{u}|^{2}+|\mathbf{v}|^{2} \Longleftrightarrow \mathbf{u} \cdot \mathbf{v}=0
$$

(b) Find the equation of the plane passing through the point $(0,0,2)$ and perpendicular to the vector $\hat{\mathbf{i}}$.
(c) Find the angle between the planes $3 x+4 y=0$ and $2 x+y-2 z=5$.
(d) Given the points $P(2,1,-1), Q(3,0,2), R(4,-2,1)$, and $S(5,-3,0)$, find the volume of the parallelepiped having adjacent sides $P Q, P R$, and $P S$.
(e) Given that $\mathbf{r}^{\prime}(t)=\left[t \mathrm{e}^{-t^{2}},-\mathrm{e}^{-t}, 1\right]$ and $\mathbf{r}(0)=\left[\frac{1}{2},-1,1\right]$, find $\mathbf{r}(t)$ at any time t.
(a) the velocity vector \mathbf{v} [1]
(b) the acceleration vector \mathbf{a} [1]
(c) the speed [2](d) the unit tangent vector $\widehat{\mathbf{T}}$[2]
(e) the curvature [5]
(f) the unit normal vector $\widehat{\mathbf{N}}$ [2]
(g) the unit binormal vector $\widehat{\mathbf{B}}$ [3]
(h) the tangential component of acceleration [2](i) the normal component of acceleration

QUESTION 4

(a) A car with initial speed u accelerates uniformly over a distance of $2 s$ which it covers in time t_{1}. It is then stopped by being retarded uniformly to rest over a distance s, which it covers in time t_{2}. Prove that

$$
\frac{u}{2 s}=\frac{2}{t_{1}}-\frac{1}{t_{2}} .
$$

(b) A particle of unit mass is thrown vertically upwards with initial speed V. The air resistance at speed v is $k v^{2}$ per unit mass, where k is a constant.
(i) Show that H, the maximum height reached, is given by

$$
H=\frac{1}{2 k} \ln \left(\frac{g+k V^{2}}{g}\right)
$$

and that the time T taken to reach this height is

$$
T=\frac{1}{\sqrt{g k}} \tan ^{-1}\left[\left(\frac{k}{g}\right)^{\frac{1}{2}} V\right]
$$

[10]
(ii) Show that the particle return to the point of projection with speed v^{*}, where

$$
v^{*}=V\left(\frac{g}{g+k V^{2}}\right)^{\frac{1}{2}}
$$

QUESTION 5

(a) From a point O, at height h above sea level, a particle is projected under gravity with a velocity of magnitude $\frac{3}{2} \sqrt{g h}$. Find the two possible angles of projection if the particle strikes the sea at horizontal distance $3 h$ from 0 . [10 marks]
(b) A particle is projected with velocity \mathbf{u} from a point O in a vertical plane through the line of greatest slope of a plane inclined at an angle $-\beta$ to the horizontal. After time T, the particle strikes the inclined plane at the point P, at a distance R from O. If \mathbf{u} makes an angle α with the horizontal, and if $|\mathbf{u}|=u$, show that:
(i) $T=\frac{2 u \sin (\alpha+\beta)}{g \cos \beta}$ and $R=\frac{u^{2}[\sin (2 \alpha+\beta)+\sin \beta]}{g \cos ^{2} \beta}$;
(ii) for constant u and β, R is maximum when $\alpha=\frac{\pi}{4}-\frac{\beta}{2}$.

QUESTION 6

(a) The position of a particle moving along the x axis is determined by the equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} x}{\mathrm{~d} t}+8 x=20 \cos (2 t)
$$

If the particle starts from rest at $x=0$, find
(i) x as a function of t,
(ii) the amplitude, period, and frequency after a long time.
(b) The weight on a vibrating spring undergoes forced vibrations according to the equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+4 x=8 \sin (\omega t)
$$

where x is the displacement from the equilibrium position and ω is a constant. If $x=0$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=0$ when $t=0$, find:
(i) x as a function of t,
(ii) the period of the external force for which resonance occurs.

QUESTION 7

A comet moves in a plane under the gravitational attraction of the sun, which is situated at the origin O. Given that the attractive force between the sun and the comet can be written as

$$
f(r)=-\frac{G M m}{r^{2}}
$$

(a) Derive the equations
(i) $\left.\ddot{r}-r \dot{\theta}^{2}\right)=-\frac{G M}{r^{2}}$;
(ii) $r^{2} \dot{\theta}=h$,
where r and θ are plane polar coordinates, h is a constant, G is the gravitational constant, M is the mass of the sun, and m is the mass of the moon.
(b) Suppose that at the initial instant, $\theta=0$, the comet is at distance d from the sun and is moving with speed v in a direction perpendicular to the radius vector from the sun. Show, by means of the substitution $r=\frac{1}{u}$, that the equation of the particle is

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \theta^{2}}+u=\frac{G M}{d^{2} v^{2}} .
$$

