University of Swaziland

Final Examination, 2012/2013

BSc III, Bass III, BEd III

Title of Paper	: Numerical Analysis I
Course Number	: M311
Time Allowed	: Three (3) hours
Instructions	:

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

QUESTION 1

- 1. (a) Convert the decimal 5.125 into its binary equivalent. [6 Marks]
 - (b) Convert the binary $(0.\overline{101})_2$ into its decimal equivalent. [6 Marks]
 - (c) Determine the machine representation in single precision on a 32-bit word length computer for the decimal number -12.75.
 [8 Marks]

QUESTION 2

2. Consider the equation

$$f(x) = x^3 + 4x^2 - 10 \tag{1}$$

- (a) Show that equation (1) has exactly one root in [1,2]. [6 Marks]
- (b) By performing 4 iterations of the bisection method, show that this root lies in the interval [1.3125, 1.375]. [8 Marks]
- (c) How many iterations would be required to locate this root to a tolerance of 10^{-5} ? [6 Marks]

QUESTION 3

3. (a) i. Interpolate the table

x	-0.5	0	0.5
f(x)	0.146	0.169	0.202

using a suitable polynomial in Newton form.

ii. Use your previous result to approximate f(0.4).

(b) Interpolate the table

with a suitable polynomial in Lagrange form. [10 marks]

[8 marks] [2 marks]

QUESTION 4

4. (a) Suppose the table

is interpolated by a polynomial $P_2(x)$ of degree at most 2.

- i. Write down the Lagrange representation of $P_2(x)$.
- ii. Derive the numerical integration rule

$$\int_0^{3h} f(x) \, dx \approx \frac{3h}{4} \left[f(0) + 3f(2h) \right]$$

by integrating $P_2(x)$ between 0 and 3h

(b) Let
$$f(x) = \sqrt{9-x} - 3$$

- i. Re-write f(x) in a new form g(x) in such a way that loss of significance is avoided. [3 marks]
- ii. Compare the results of calculating f(0.0001) and g(0.0001) using five digits and chopping. [3 marks]

QUESTION 5

5. (a) Find the coefficients below for the three-point Gaussian quadrature rule:

$$\int_{-1}^{1} f(x)dx \approx af\left(-\sqrt{\frac{3}{5}}\right) + bf(0) + cf\left(+\sqrt{\frac{3}{5}}\right)$$

[8 marks]

(b) Estimate $\int_{-3}^{3} \frac{1}{t^2 + 1} dt$ using this rule, and express your answer as a fraction. [12 marks]

[7 marks]

[5 marks]

QUESTION 6

6. (a) Find the LU factorisation of the matrix

$$A = \begin{pmatrix} 4 & -2 & 0 & 0 \\ -2 & 2 & 2 & 0 \\ 0 & 2 & 8 & -6 \\ 0 & 0 & -6 & 10 \end{pmatrix}$$

where the diagonal elements of L are all 1s.

(b) Solve the linear system

$$A\begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{pmatrix} = \begin{pmatrix} 1\\ -1\\ 0\\ 2 \end{pmatrix}$$

using the LU factorisation obtained in (6a)

[10 marks]

QUESTION 7

7. (a) Estimate the root of the equation

$$\ln x - e^x + 3 = 0$$

using 3 iterations of each of the following methods.

- i. Newton method with starting point $x_0 = 1$. [6 marks]
- ii. Secant method with starting points $x_0 = 1$ and $x_2 = 2$. [8 marks]
- (b) Consider the bisection algorithm starting with the interval [1.9, 2.1].
 - i. What is the width of the interval at the 9-th step of the iteration? [3 marks]
 - ii. What is the maximum distance possible between the true solution x^* and the mid-point x_9 of this interval? [3 marks]

[10 marks]