University of Swaziland

Final Examination, 2012/2013

BSc III, Bass III, BEd III

Title of Paper : Numerical Analysis I
Course Number : M311
Time Allowed : Three (3) hours

Instructions

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

QUESTION 1

1. (a) Convert the decimal 5.125 into its binary equivalent.
(b) Convert the binary $(0 . \overline{101})_{2}$ into its decimal equivalent.
(c) Determine the machine representation in single precision on a 32 -bit word length computer for the decimal number -12.75 .

QUESTION 2

2. Consider the equation

$$
\begin{equation*}
f(x)=x^{3}+4 x^{2}-10 \tag{1}
\end{equation*}
$$

(a) Show that equation (1) has exactly one root in $[1,2]$.
(b) By performing 4 iterations of the bisection method, show that this root lies in the interval [1.3125, 1.375].
(c) How many iterations would be required to locate this root to a tolerance of 10^{-5} ?

QUESTION 3

3. (a) i. Interpolate the table

$$
\begin{array}{c|c|c|c}
x & -0.5 & 0 & 0.5 \\
\hline f(x) & 0.146 & 0.169 & 0.202
\end{array}
$$

using a suitable polynomial in Newton form.
ii. Use your previous result to approximate $f(0.4)$.
(b) Interpolate the table

x	0	3	-2	4
$f(x)$	1	181	-39	801

with a suitable polynomial in Lagrange form.
[10 marks]

QUESTION 4

4. (a) Suppose the table

$$
\begin{array}{c|c|c|c}
x & 0 & h & 2 h \\
\hline f(x) & f(0) & f(h) & f(2 h)
\end{array}
$$

is interpolated by a polynomial $P_{2}(x)$ of degree at most 2.
i. Write down the Lagrange representation of $P_{2}(x)$.
ii. Derive the numerical integration rule

$$
\int_{0}^{3 h} f(x) d x \approx \frac{3 h}{4}[f(0)+3 f(2 h)]
$$

by integrating $P_{2}(x)$ between 0 and $3 h$
(b) Let $f(x)=\sqrt{9-x}-3$
i. Re-write $f(x)$ in a new form $g(x)$ in such a way that loss of significance is avoided.
ii. Compare the results of calculating $f(0.0001)$ and $g(0.0001)$ using five digits and chopping.

QUESTION 5

5. (a) Find the coefficients below for the three-point Gaussian quadrature rule:

$$
\int_{-1}^{1} f(x) d x \approx a f\left(-\sqrt{\frac{3}{5}}\right)+b f(0)+c f\left(+\sqrt{\frac{3}{5}}\right)
$$

[8 marks]
(b) Estimate $\int_{-3}^{3} \frac{1}{t^{2}+1} d t$ using this rule, and express your answer as a fraction.

QUESTION 6

6. (a) Find the $L U$ factorisation of the matrix

$$
A=\left(\begin{array}{cccc}
4 & -2 & 0 & 0 \\
-2 & 2 & 2 & 0 \\
0 & 2 & 8 & -6 \\
0 & 0 & -6 & 10
\end{array}\right)
$$

where the diagonal elements of L are all 1 s .
(b) Solve the linear system

$$
A\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
2
\end{array}\right)
$$

using the $L U$ factorisation obtained in (6a)
[10 marks]

QUESTION 7

7. (a) Estimate the root of the equation

$$
\ln x-e^{x}+3=0
$$

using 3 iterations of each of the following methods.
i. Newton method with starting point $x_{0}=1$.
ii. Secant method with starting points $x_{0}=1$ and $x_{2}=2$.
(b) Consider the bisection algorithm starting with the interval $[1.9,2.1]$.
i. What is the width of the interval at the 9 -th step of the iteration?
ii. What is the maximum distance possible between the true solution x^{\star} and the mid-point x_{9} of this interval?

