University of Swaziland

Supplementary Examination, 2012/2013

BSc III, Bass III, BEd III

Title of Paper	: Numerical Analysis I
Course Number	$:$ M311
Time Allowed	: Three (3) hours
Instructions	$:$

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

QUESTION 1

1. (a) Convert the decimal 115.25 into its binary equivalent.
[6 Marks]
(b) Convert the binary $(0.1 \overline{10})_{2}$ into its decimal equivalent.
(c) Convert the single precision machine number

$$
[01000001111101001100000000000000]_{2}
$$

to its decimal equivalent..

QUESTION 2

2. Consider the function

$$
\begin{equation*}
f(x)=x-\cos x \tag{1}
\end{equation*}
$$

(a) Show that equation (1) has exactly one root in $[0, \pi / 2]$. [6 Marks]
(b) Determine the closed interval in which the root lies upon performing 4 iterations of the bisection method.
(c) How many iterations would be required to locate this root to a tolerance of 10^{-8} ?

QUESTION 3

3. (a) i. Interpolate the table

x	-0.2	0	0.2
$f(x)$	0.164	0.196	0.209

using a suitable polynomial in Lagrange form.
ii. Use your previous result to approximate $f(-0.1)$.
(b) Interpolate the table

x	0	3	-2	4
$f(x)$	1	181	-39	801

with a suitable polynomial in Newton form.
[10 marks]

QUESTION 4

4. (a) Suppose the table

x	0	h	$2 h$
$f(x)$	$f(0)$	$f(h)$	$f(2 h)$

is interpolated by a polynomial $P_{2}(x)$ of degree at most 2.
i. Write down the Lagrange representation of $P_{2}(x)$.
ii. Derive the numerical integration rule

$$
\int_{0}^{3 h} f(x) d x \approx \frac{3 h}{4}[f(0)+3 f(2 h)]
$$

by integrating $P_{2}(x)$ between 0 and $3 h$
(b) Find the roots of the following quadratic equation (as accurately as possible) using 8 digits and rounding

$$
x^{2}-100000 x+1=0
$$

QUESTION 5

5. (a) Find the coefficients below for the three-point Gaussian quadrature rule:

$$
\int_{-1}^{1} f(x) d x \approx a f(-1)+b f(0)+c f(+1)
$$

[8 marks]
(b) Estimate $\int_{0}^{\pi / 4} \cos ^{2} t d t$ using this rule.

QUESTION 6

6. Solve the linear system

$$
\begin{array}{rlr}
4 x_{1}-2 x_{2} & =2 \\
-2 x_{1}+2 x_{2}+2 x_{3} & =1 \\
2 x_{2}+8 x_{3}-6 x_{3} & =1 \\
& -6 x_{3}+10 x_{3} & =-1
\end{array}
$$

using the $L U$ factorisation.
[20 marks]

QUESTION 7

7. (a) Estimate the root of the equation

$$
x^{3}-2 x+2=0
$$

using 3 iterations of the secant method with starting points $x_{0}=0$ and $x_{2}=1$.
[8 marks]
(b) Evaluate $\int_{0}^{2} \frac{x}{1+x} d x$ using Simpson's rule with $h=0.5$. Find the error against the exact value of the integral to four decimal places. [6 marks]
(c) Consider the integral $\int_{0}^{1} \sin \left(\frac{\pi x^{2}}{2}\right) d x$. Suppose we wish to integrate it numerically with an error of magnitude less than 10^{-5}. What width h is needed if we wish to use the composite Trapezoid rule?
[6 marks]

