University of Swaziland

Supplementary Examination, 2012/2013

BSc III, Bass III, BEd III

Title of Paper: Numerical Analysis ICourse Number: M311Time Allowed: Three (3) hoursInstructions:

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

QUESTION 1

1.	(a)	Convert the decimal 115.25 into its binary equivalent.	[6 Marks]
	(b)	Convert the binary $(0.1\overline{10})_2$ into its decimal equivalent.	[6 Marks]

(c) Convert the single precision machine number

 $[0\ 10\ 000\ 011\ 111\ 010\ 011\ 000\ 000\ 000\ 000\ 000\ 00]_2$

to its decimal equivalent ..

[8 Marks]

QUESTION 2

2. Consider the function

$$f(x) = x - \cos x \tag{1}$$

- (a) Show that equation (1) has exactly one root in $[0, \pi/2]$. [6 Marks]
- (b) Determine the closed interval in which the root lies upon performing 4 iterations of the bisection method. [8 Marks]
- (c) How many iterations would be required to locate this root to a tolerance of 10^{-8} ? [6 Marks]

QUESTION 3

3. (a) i. Interpolate the table

using a suitable polynomial in Lagrange form. [8 marks]

ii. Use your previous result to approximate f(-0.1). [2 marks]

(b) Interpolate the table

with a suitable polynomial in Newton form.

[10 marks]

QUESTION 4

4. (a) Suppose the table

Į

is interpolated by a polynomial $P_2(x)$ of degree at most 2.

i. Write down the Lagrange representation of $P_2(x)$. [5 marks]

ii. Derive the numerical integration rule

$$\int_0^{3h} f(x) \, dx \approx \frac{3h}{4} \left[f(0) + 3f(2h) \right]$$

by integrating $P_2(x)$ between 0 and 3h

[7 marks]

(b) Find the roots of the following quadratic equation (as accurately as possible) using 8 digits and rounding

$$x^2 - 100000x + 1 = 0$$

[8 marks]

QUESTION 5

5. (a) Find the coefficients below for the three-point Gaussian quadrature rule:

$$\int_{-1}^{1} f(x) dx \approx af(-1) + bf(0) + cf(+1)$$

[8 marks]

(b) Estimate
$$\int_0^{\pi/4} \cos^2 t \, dt$$
 using this rule. [12 marks]

QUESTION 6

6. Solve the linear system

using the LU factorisation.

[20 marks]

QUESTION 7

7. (a) Estimate the root of the equation

$$x^3 - 2x + 2 = 0$$

using 3 iterations of the secant method with starting points $x_0 = 0$ and $x_2 = 1$. [8 marks]

- (b) Evaluate $\int_0^2 \frac{x}{1+x} dx$ using Simpson's rule with h = 0.5. Find the error against the exact value of the integral to four decimal places. [6 marks]
- (c) Consider the integral $\int_0^1 \sin\left(\frac{\pi x^2}{2}\right) dx$. Suppose we wish to integrate it numerically with an error of magnitude less than 10^{-5} . What width h is needed if we wish to use the composite Trapezoid rule? [6 marks]