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QUESTION 1 


(a) Prove that the diagonals of a parallelogram bisect each other. 	 [6] 

(b) Prove that a parallelogram is a rectangle if and only if its diagonals are equal 

in length. [6] 

(c) 	Find the unit vectors that are tangent and normal to the curve y foX \1'3 + t4dt 

at the point (0,0). [6] 

(d) 	 Prove that Hj x k) = 1. [2] 

QUESTION 2 

(a) Let u and v be nonzero vectors in space. Prove each of the following geometric 

properties of the cross product u x v: 

(i) 	 u x v is perpendicular to the plane containing u and v; [3] 

(ii) 	 lu x vi = lullvlsinO, where 0 is the angle between u and v; [3] 

(iii) 	 u x v = 0 if and only if u and v are either parallel or antiparallel; and [2] 

(iv) 	 lu x vi is the are area of the parallelogram ABeD, where A::B = u and 

AD v. [3] 

(b) Let F(t) = (eti +j + t 2 k)x(t3i +j - k). Find F'(t). 	 [4] 

(c) 	 Let u and v be space vectors. Prove Lagrange '8 Identity, 

lu X vl2 = (Iullvl? (u· v)2. 

[5] 



QUESTION 3 


(a) Reparametrize the curve 

x = sint, y = cost,z = t; °~ t ~ 27f, 

in terms of the arc length. 	 [4] 

(b) Let C be the curve traced by r ret); a suitably differentiable vector function. 

Show that: 


. ~ r'(t)xr"(t)

(1) 	 B = . and [3J/r'(t)xr"(t)/ ' 

. . N (r' (t)x r" (t) ) x r' (t ) 


[3J(ll) = I(r'(t) x r" (t) )x r'(t)l' 

(c) Find the outward unit normal vector to the ellipse 

x2 y2 

a2 + b2 1, a, b > 0, 


-a b)
at the point P ( v'2' v'2 . 	 [10] 

QUESTION 4 

(a) A curvilinear coordinate system (u, v, ¢) is defined by 

2x = 	auv cos ¢, y = auvsin¢, Z = ~(U2 - v ), where u,v > 0, -7f < ¢ < 7f. 

(i) Find the scale factors and the unit vectors. 	 [6] 

(ii) 	Show that the coordinate system is orthogonal. [3] 

(iii) 	 Find the line element and the volume element. [1,2] 

(b) Find the maximum rate of increase of f(x, y, z) = x+xyz at (1,3, 2). In what 

direction does this occur? [5] 

(c) Find 	an equation for the tangent plane to the level surface x 2 + yz = 5 at 

(2,2,1) [3] 



QUESTION 5 


(a) By any method, find the integral of H(x, y, z) = yz over the part of the sphere 

x2+ y2 + Z2 = 16 that lies above the cone z = Jx2+ y2. [6] 

(b) Find the work done in moving a particle in the counterclockwise direction once 
2 2 

around the ellipse x + Y3 1 if the force field is given by F = (3x - 4y)i + 4 . 
(4x + 2y)j - 4y2 k. [4] 

(c) Find 	out which of the fields given below are conservative. For conservative 

fields, find a potential function. 

(i) 	F (yz2)i + (xz2)J + (x2yz)k. [2] 

(ii) F (eXsiny)i+ (eXcosy+sinz)j + (ycosz)k. 	 [8] 

QUESTION 6 

(a) Evaluate J1[xz2dydz + (x2y z3) dz dx + (2xy + y2Z) dx dy], where S is the 

entire surface of the hemispherical region bounded by z = Ja2 - x2 - y2 and 

z=O 

(i) 	 by the divergence theorem (Green's theorem in space), [5] 

(ii) directly. 	 [7] 

(b) Verify Stokes' theorem for A = 3yi - xZJ + yz2k, where S is the surface of the 

paraboloid 2z x2 + y2 bounded by z = 2 and C is its boundary. [8] 



QUESTION 7 

(a) Let 	In(x) be the Bessel function of the first kind of order n. Evaluate 

1 dx 
[3](i) 	1Vh:f'o 	 In.! 

x 

00 

(ii) 	1 ylyexp-y
3 dy. [3J 

(b) Using 	the Bessel function of the first kind (In(x), express J4 (ax) in terms of 

Jo(ax) and J1 (ax). [6] 

(c) 	 Legendre's differential equation is given by 

(1 - X2)p:;(X) - 2xP~(x) +n(n + l)Pn(x) = O. 


Using this, or by any other method, prove that 


1: Pm(x)Pn(x)dx 0, if m =1= n. 

[8J 

END OF EXAMINATION 


