UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2012/2013
B.Sc. / B.Ed. / B.A.S.S. / B.EENG. III

TITLE OF PAPER	$:$	VECTOR ANALYSIS
COURSE NUMBER	$:$	M312
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS		
		1. THIS PAPER CONSISTS OF
		2. ANSWEN QUESTIONS.

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Prove that the diagonals of a parallelogram bisect each other.
(b) Prove that a parallelogram is a rectangle if and only if its diagonals are equal in length.
(c) Find the unit vectors that are tangent and normal to the curve $y=\int_{0}^{x} \sqrt{3+t^{4}} \mathrm{~d} t$ at the point $(0,0)$.
(d) Prove that $\hat{\mathbf{i}} \cdot(\hat{\mathbf{j}} \times \hat{\mathbf{k}})=1$.

QUESTION 2

(a) Let \mathbf{u} and \mathbf{v} be nonzero vectors in space. Prove each of the following geometric properties of the cross product $\mathbf{u} \times \mathbf{v}$:
(i) $\mathbf{u} \times \mathbf{v}$ is perpendicular to the plane containing u and v;
(ii) $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta$, where θ is the angle between \mathbf{u} and \mathbf{v};
(iii) $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ if and only if \mathbf{u} and \mathbf{v} are either parallel or antiparallel; and [2]
(iv) $|\mathbf{u} \times \mathbf{v}|$ is the are area of the parallelogram $A B C D$, where $\overrightarrow{\mathbf{A B}}=\mathbf{u}$ and $\overrightarrow{\mathrm{AD}}=v$.
(b) Let $\mathbf{F}(\mathbf{t})=\left(\mathrm{e}^{\mathbf{t}} \hat{\mathbf{i}}+\hat{\mathbf{j}}+\mathbf{t}^{2} \hat{\mathbf{k}}\right) \times\left(\mathbf{t}^{3} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\right)$. Find $\mathbf{F}^{\prime}(t)$.
(c) Let \mathbf{u} and \mathbf{v} be space vectors. Prove Lagrange's Identity,

$$
|\mathbf{u} \times \mathbf{v}|^{2}=(|\mathbf{u}||\mathbf{v}|)^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}
$$

QUESTION 3

(a) Reparametrize the curve

$$
x=\sin t, \quad y=\cos t, z=t ; \quad 0 \leq t \leq 2 \pi
$$

in terms of the arc length.
(b) Let C be the curve traced by $\mathrm{r}=\mathrm{r}(t)$; a suitably differentiable vector function. Show that:
(i) $\hat{\mathbf{B}}=\frac{\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)}{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}$; and
(ii) $\hat{\mathbf{N}}=\frac{\left(\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right) \times \mathbf{r}^{\prime}(t)}{\left|\left(\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right) \times \mathbf{r}^{\prime}(t)\right|}$.
(c) Find the outward unit normal vector to the ellipse

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad a, b>0 \tag{10}
\end{equation*}
$$

at the point $P\left(\frac{-a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$.

QUESTION 4

(a) A curvilinear coordinate system (u, v, ϕ) is defined by $x=\operatorname{auv} \cos \phi, \quad y=a u v \sin \phi, \quad z=\frac{a}{2}\left(u^{2}-v^{2}\right)$, where $u, v>0,-\pi<\phi<\pi$.
(i) Find the scale factors and the unit vectors.
(ii) Show that the coordinate system is orthogonal.
(iii) Find the line element and the volume element.
(b) Find the maximum rate of increase of $f(x, y, z)=x+x y z$ at $(1,3,-2)$. In what direction does this occur?
(c) Find an equation for the tangent plane to the level surface $x^{2}+y z=5$ at $(2,2,1)$

QUESTION 5

(a) By any method, find the integral of $H(x, y, z)=y z$ over the part of the sphere $x^{2}+y^{2}+z^{2}=16$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$.
(b) Find the work done in moving a particle in the counterclockwise direction once around the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ if the force field is given by $\mathbf{F}=(3 x-4 y) \hat{\mathbf{i}}+$ $(4 x+2 y) \hat{\mathbf{j}}-4 y^{2} \hat{\mathbf{k}}$.
(c) Find out which of the fields given below are conservative. For conservative fields, find a potential function.
(i) $\mathbf{F}=\left(y z^{2}\right) \hat{\mathbf{i}}+\left(x z^{2}\right) \hat{\mathbf{j}}+\left(x^{2} y z\right) \hat{\mathbf{k}}$.
[2]
(ii) $\mathbf{F}=\left(e^{x} \sin y\right) \hat{\mathbf{i}}+\left(e^{x} \cos y+\sin z\right) \hat{\mathbf{j}}+(y \cos z) \hat{\mathbf{k}}$.

QUESTION 6

(a) Evaluate $\iint_{S}\left[x z^{2} \mathrm{~d} y \mathrm{~d} z+\left(x^{2} y-z^{3}\right) \mathrm{d} z \mathrm{~d} x+\left(2 x y+y^{2} z\right) \mathrm{d} x \mathrm{~d} y\right]$, where S is the entire surface of the hemispherical region bounded by $z=\sqrt{a^{2}-x^{2}-y^{2}}$ and $z=0$
(i) by the divergence theorem (Green's theorem in space),
(ii) directly,
(b) Verify Stokes' theorem for $\mathbf{A}=3 y \hat{\mathbf{i}}-x z \hat{\mathbf{j}}+y z^{2} \hat{\mathbf{k}}$, where S is the surface of the paraboloid $2 z=x^{2}+y^{2}$ bounded by $z=2$ and C is its boundary.

QUESTION 7

(a) Let $J_{n}(x)$ be the Bessel function of the first kind of order n. Evaluate
(i) $\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{\ln \frac{1}{x}}}$.
[3]
(ii) $\int_{0}^{\infty} \sqrt{y} \exp ^{-y^{3}} \mathrm{~d} y$.
[3]
(b) Using the Bessel function of the first kind $\left(J_{n}(x)\right.$, express $J_{4}(a x)$ in terms of $J_{0}(a x)$ and $J_{1}(a x)$.
(c) Legendre's differential equation is given by

$$
\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)-2 x P_{n}^{\prime}(x)+n(n+1) P_{n}(x)=0
$$

Using this, or by any other method, prove that

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) \mathrm{d} x=0, \quad \text { if } m \neq n
$$

