UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2012/2013

B.Sc. / B.Ed. / B.A.S.S. / B.EENG. III

TITLE OF PAPER VECTOR ANALYSIS
COURSE NUMBER M312
TIME ALLOWED THREE (3) HOURS
INSTRUCTIONS 1. THIS PAPER CONSISTS OFSEVEN QUESTIONS.2. ANSWER ANY FIVE QUESTIONS
SPECIAL REQUIREMENTS NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Show that the diagonals of a rhombus are perpendicular.
(b) Show that squares are the only rectangles with perpendicular diagonals.
(c) Find parametric equations for the tangent and normal lines to the curve C_{1} : $x=t^{2}, \quad y=t^{3}, \quad z=1-t ; \quad-\infty<t<\infty, \quad$ at the point $(1,-1,2)$.
(d) Prove that $\mathbf{u} \cdot(\mathbf{u} \times \mathbf{v})=\mathbf{u} \cdot(\mathbf{v} \times \mathbf{v})=\mathbf{u} \cdot(\mathbf{v} \times \mathbf{u})=0$.

QUESTION 2

(a) Let \mathbf{u} and \mathbf{v} be vectors in space. Prove the Parallelogram Law,

$$
|\mathbf{u}+\mathbf{v}|^{2}+|\mathbf{u}-\mathbf{v}|^{2}=2\left(|\mathbf{u}|^{2}+|\mathbf{v}|^{2}\right)
$$

[5]
(b) Prove that $\frac{\mathrm{d}}{\mathrm{d} u}(\mathbf{A} \cdot \mathbf{B})=\mathbf{A} \cdot \frac{\mathrm{d} \mathbf{B}}{\mathrm{d} u}+\frac{\mathrm{d} \mathbf{A}}{\mathrm{d} u} \cdot \mathbf{B}$, where \mathbf{A} and \mathbf{B} are differentiable functions of u.
(c) Given the line

$$
\begin{equation*}
L: \quad x=1-4 t, \quad y=-5-2 t, \quad z=-5-2 t ; \quad-\infty<t<\infty, \tag{5}
\end{equation*}
$$

find the equation of the plane containing L and the point $P_{0}(-3,2,-2)$.
(d) Find parametric equations for the line in which the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$ intersect.

QUESTION 3

(a) Find the length of the arc between $(2,0,0)$ and $(0,2,0)$ of the curve curve traced by $\mathbf{r}(\theta)=2 \cos \theta \hat{\mathbf{i}}+2 \sin \theta \hat{\mathbf{j}} ; 0 \leq \theta \leq 2 \pi$.
(b) Let C be the curve traced by the vector function $a \cos t \hat{\mathbf{i}}+a \sin t \hat{\mathbf{j}}+b t \hat{\mathbf{k}}$, where a and b are positive numbers. Find the curvature of the curve C.
(c) Part of a railway line (superimposed on a rectangular coordinate system) follows the line $y=-x$ for $x \leq 0$, then turns to reach the point $(4,0)$ following a cubic curve. Find the equation of this curve if the track is continuous, smooth, and has continuous curvature.

QUESTION 4

(a) Let $\mathbf{u}(x, y, z)=x \hat{\mathrm{i}}-y \hat{\mathbf{j}}$ and $\mathbf{v}(x, y, z)=\frac{\mathbf{u}}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}}$ be vectors in space.
(i) Compute the divergence and the curl of \mathbf{u} and \mathbf{v}.
(ii) Find the flow lines of \mathbf{u} and \mathbf{v}.
(b) Determine the directional derivative of $\phi(x, y)=100-x^{2}-y^{2}$ at the point $(3,6)$ in the direction of the unit vector $\hat{\mathbf{u}}=a \hat{\mathbf{i}}+b \hat{\mathbf{j}}$.
(c) Find the tangent plane and the normal line to the surface $x^{2} y+x y z-z^{2}=2$ at the point $P_{0}(1,1,3)$.

QUESTION 5

(a) By any method, find the outward flux of the field $\mathbf{F}=\left(6 x^{2}+2 x y\right) \hat{\mathbf{i}}+(2 y+$ $\left.x^{2} z\right) \hat{\mathbf{j}}+\left(4 x^{2} y^{3}\right) \hat{\mathbf{k}}$ across the boundary of the region cut from the first octant by the cylinder $x^{2}+y^{2}=9$ and the plane $z=9$.
(b) By any method, find the circulation of the field $\mathbf{F}=\left(x^{2}+y^{2}\right) \hat{\mathbf{i}}+(x+y) \hat{\mathbf{j}}$ around the triangle with vertices $(1,0),(0,1),(-3,0)$ traversed in the counterclockwise direction.

QUESTION 6

(a) Verify the divergence theorem for $\mathbf{F}=(2 x-z) \hat{\mathbf{i}}+x^{2} y \hat{\mathbf{j}}-x z^{2} \hat{\mathbf{k}} \mathbf{i}$ taken over the region bounded by $x=2, x=5, y=2, y=5, z=2, z=5$.
(b) Verify Green's theorem in the plane for

$$
\oint_{C}[2 x \mathrm{~d} x-(3 y-x) \mathrm{d} y]
$$

where C is the closed curve (described in the positive direction) of the region bounded by the curves $y=x^{2}$ and $y^{2}=x$.

QUESTION 7

(a) Evaluate
(i) $\int x^{4} J_{1}(x) \mathrm{d} x$
(ii) $\int x^{3} J_{3}(x) \mathrm{d} x$
(iii) $\int_{0}^{\infty} \frac{y^{2}}{1+y^{4}} \mathrm{~d} y$.
(iv) $\int_{0}^{\pi} \sin ^{5} \theta \mathrm{~d} \theta$, where $J_{1}(x)$ and $J_{3}(x)$ are Bessel functions of the first kind of order 1 and order 3 , respectively.
(b) Evaluate

$$
\int_{0}^{\infty} x^{m} \mathrm{e}^{-a x^{n}} \mathrm{~d} x
$$

where m and n are positive integers.

