UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012/13
BSC III

TITLE OF PAPER	$:$	COMPLEX ANALYSIS
COURSE NUMBER	$:$	M313
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
	2. ANSWER ANY FIVE QUESTIONS	
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) (i) Prove that $\operatorname{Im}(i z)=R e z$,
(ii) solve $z^{n}=1$ for any integer n.
(b) In the complex plane define and give example of
(i) domain,
(ii) interior point.
(c) Sketch the following sets and determine which are domains
(i) $|2 z+3|>4$,
(ii) $\operatorname{Re} z \leq 2$,
(iii) $0<\arg z<\frac{\pi}{3}$.
(d) Construct a line
$R_{e} \frac{1}{z}=2$.

QUESTION 2

(a) Find the region into which a transformation $w=z^{2}$ maps the strip $0 \leq x \leq c, \quad y \geq 0$. [4]
(b) Find the limits. Give your reasonings
(i) $\lim _{z \rightarrow \infty} \frac{3 z+3 i}{1+z}$,
(ii) $\lim _{z \rightarrow-2} \frac{i z+2}{z+2}$.
(c) Define $f(z)$ continuous at z_{o}.
(d) Using just a definition of derivative, find if possible $f^{\prime}(z)$ if
(i) $f(z)=z^{2}+3$
(ii) $f(z)=I m z$.
(e) Derive Cauchy-Riemann conditions

QUESTION 3

(a) Using Cauchy-Riemann equations (CRE)
(i) state the sufficient conditions theorem for existance of $f^{\prime}(z)$, and thus
(ii) check if there is $f^{\prime}(z)$ if $f(z)=z^{2}, f(z)=|z|^{2}$. Find $f^{\prime}(z)$.
(b) Verify CRE for
$f(z)=z-\bar{z}$.
(c) Use CRE in polars to show that
$f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right)$
in the usual notations.
HINT: $u_{x}=u_{r} \cos \theta-u_{\theta} \frac{\sin \theta}{r}$
$v_{x}=v_{r} \cos \theta-v_{\theta} \frac{\sin \theta}{r}$.

QUESTION 4

a) Consider $f(z)=\frac{1}{z}$. Give your reasonings to answer if f
(i) is analytic,
(ii) has the singular points.
b) Prove that if $f(z)=u(x, y)+i v(x, y)$ is analytic, $z=x+i y$, in domain D, then u and v are harmonic in D.
c) For the function $u(x, y)=x^{2}+3 y^{2}$, find whether it can be the real part of a complex analytic function, and if so, find the corresponding imaginary part.
d) Show that $u(x, y)=x^{4}-6 x^{2} y^{2}+y^{4}$ is harmonic and find corresponding harmonic conjugate function.

QUESTION 5

a) Let $f(z)=z-1$ and c is the arc from $z=0$ to $z=2$ consisting of the semicircle $z=1+e^{i \theta}, \pi \leq$ $\theta \leq 2 \pi$.

Evaluate $\int_{c} f(z) d z$.
b) (i) Derive Cauchy formula for continuous $f^{\prime}(z)$.

HINT: Apply Green's formula

$$
\int_{c} P d x+Q d y=\iint_{R}\left(Q_{x}-P_{y}\right) d x d y
$$

(ii) Use result from (i) to evaluate
$\int_{c} \frac{d z}{\left(z^{2}-1\right)\left(z^{2}+25\right)}$,
if $c=\{z:|z|=4$ in positive direction, and $|z|=2$ in negative direction $\}$.
c) Apply Cauchy integral formula to evaluate

$$
\int_{c} \frac{d z}{z^{2}+2 z}
$$

where c is a positively oriented circle $|z|=1$.

QUESTION 6

a) Apply extended Cauchy integral formula to evaluate
$\int_{c} \frac{d z}{\left(z^{2}+4\right)^{2}}$, where c is a positively oriented circle $|z-i|=2$.
b) State the Laurent series theorem.
c) Expand $f(z)=\frac{1}{1+z}$ in Maclaurin series.
d) i) Expand

$$
f(z)=\frac{1}{(z-1)^{2}(z-3)}
$$

in Laurent series in powers of $z-1$ valid for $0<|z-1|<2$.
(ii) What is the principal part of the series in i)?

QUESTION 7

a) For $f(z)=\frac{1}{4 z-z^{2}}$
(i) find residue at $z=0$, and thus
(ii) evaluate $\int_{c} \frac{d z}{4 z-z^{2}}$, where c is a positively oriented circle $|z|=2$.
b) i) State the residue theorem, and
ii) apply it to evaluate $\int_{c} \frac{d z}{1+z^{2}}$, where c is a positively oriented circle $|z|=2$.
c) Using the residue theorem evaluate
$\int_{0}^{\infty} \frac{x \sin x}{x^{2}+1} d x$.

