UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012/13

BSC III

TITLE OF PAPER	:	COMPLEX ANALYSIS
COURSE NUMBER	:	M313
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

•

(a) (i) Prove that $Im(iz) = Re z$,	
(ii) solve $z^n = 1$ for any integer n .	[2,4]
(b) In the complex plane define and give example of	
(i) domain,	
(ii) interior point.	[2,2]
(c) Sketch the following sets and determine which are domains	
(i) $ 2z+3 > 4$,	
(ii) $Re \ z \leq 2$,	
(iii) $0 < \arg z < \frac{\pi}{3}$.	[2,2,2]
(d) Construct a line	
$R_e rac{1}{z} = 2.$	[4]

QUESTION 2

(a) Find the region into which a transformation $w=z^2$ maps the strip $0\leq x\leq c, y\geq 0.$	[4]
(b) Find the limits. Give your reasonings	
(i) $\lim_{z \to \infty} \frac{3z + 3i}{1 + z},$	
(ii) $\lim_{z \to -2} \frac{iz+2}{z+2}.$	[2,2]
(c) Define $f(z)$ continuous at z_o .	[2]
(d) Using just a definition of derivative, find if possible $f'(z)$ if	
(i) $f(z) = z^2 + 3$,	
(ii) $f(z) = Im \ z$.	[2,2]
(e) Derive Cauchy-Riemann conditions	[6]

- (a) Using Cauchy-Riemann equations (CRE)
- (i) state the sufficient conditions theorem for existance of f'(z), and thus
- (ii) check if there is f'(z) if $f(z) = z^2$, $f(z) = |z|^2$. Find f'(z). [2,6]
- (b) Verify CRE for

$$f(z) = z - \overline{z}.$$
[4]

(c) Use CRE in polars to show that

$$f'(z) = e^{-i\theta}(u_r + iv_r)$$

in the usual notations.

HINT:
$$u_x = u_r \cos \theta - u_\theta \frac{\sin \theta}{r}$$

 $v_x = v_r \cos \theta - v_\theta \frac{\sin \theta}{r}$. [8]

QUESTION 4

a) Consider $f(z) = \frac{1}{z}$. Give your reasonings to answer if f

(i) is analytic,

(ii) has the singular points. [2,2]

b) Prove that if f(z) = u(x,y) + iv(x,y) is analytic, z = x + iy, in domain D, then u and v are harmonic in D. [6]

c) For the function $u(x,y) = x^2 + 3y^2$, find whether it can be the real part of a complex analytic function, and if so, find the corresponding imaginary part. [3]

d) Show that $u(x,y) = x^4 - 6x^2y^2 + y^4$ is harmonic and find corresponding harmonic conjugate function. [7]

a) Let f(z) = z - 1 and c is the arc from z = 0 to z = 2 consisting of the semicircle $z = 1 + e^{i\theta}$, $\pi \le \theta \le 2\pi$.

Evaluate
$$\int_{c} f(z) dz$$
. [6]

b) (i) Derive Cauchy formula for continuous f'(z).

HINT: Apply Green's formula

.

$$\int_{c} Pdx + Qdy = \int \int_{R} (Q_x - P_y) dx dy.$$

(ii) Use result from (i) to evaluate

$$\int_{c} \frac{dz}{(z^{2}-1)(z^{2}+25)},$$

if $c = \{z : |z| = 4$ in positive direction, and $|z| = 2$ in negative direction}. [6,3]

c) Apply Cauchy integral formula to evaluate

$$\int_c \frac{dz}{z^2 + 2z},$$

where c is a positively oriented circle |z| = 1.

QUESTION 6

a) Apply extended Cauchy integral formula to evaluate

$\int_c \frac{dz}{(z^2+4)^2}$, where c is a positively oriented circle $ z-i =2$.	[6]
b) State the Laurent series theorem.	[3]

c) Expand
$$f(z) = \frac{1}{1+z}$$
 in Maclaurin series. [3]

d) i) Expand

$$f(z) = \frac{1}{(z-1)^2(z-3)}$$

in Laurent series in powers of z - 1 valid for 0 < |z - 1| < 2.

(ii) What is the principal part of the series in i)?

[7,1]

[5]

.

a) For
$$f(z) = \frac{1}{4z - z^2}$$

(i) find residue at $z = 0$, and thus
(ii) evaluate $\int_c \frac{dz}{4z - z^2}$, where c is a positively oriented circle $|z| = 2$. [4,3]
b) i) State the residue theorem, and
ii) apply it to evaluate $\int_c \frac{dz}{1 + z^2}$, where c is a positively oriented circle $|z| = 2$. [2,4]
c) Using the residue theorem evaluate

 $\int_0^\infty \frac{x \sin x}{x^2 + 1} dx.$

•