UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012/13

BSC./B.ED./B.A.S.S III

TITLE OF PAPER	$:$	ABSTRACT ALGEBRA I
COURSE NUMBER	$:$	M323
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
		2. ANSWER ANY FIVE QUESTIONS
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.
(a) Suppose that d, a, b are positive integers, $(a, d)=1$ and that d divides $a b$. Prove that d divides b.
(b) Let H be a subgroup of a group G and let, for $a, b, \in G a R b$ if and only if $a=g^{-1} b g$ for some $g \in H$

Show that R is an equivalence relation on the set G.
(c) The table below may be completed to define a binary opertion $*$ on the st $G=$ $\{a, a, b, c\}$ in such a way that $(G, *)$ becomes a group. Assume this is possible and computer the missing entries.

(d) Prove that, in any group G the indentity element is unique.

QUESTION 2

(a) Determine whether the set \mathbb{Q} with respect to the binary operation

$$
a * b=a+b-2013
$$

is a group.
(b) Find the greatest common divisor d of the numbers 102 and 42 and express it in the forms

$$
d=102 m+42 n \quad \text { for some } \quad m, n \in \mathbb{Z}
$$

(c) (i) State Lagrange's Theorem.
(ii) Prove that every finite group prime order is cyclic.

QUESTION 3

(a) Let H be the subset

$$
\left\{\rho_{0}=(1), \rho_{1}=(1234), \rho_{2}=(13)(24), \rho_{3}=(1432)\right\}
$$

of the group D_{4}.
(i) Show that H is a subgroup of D_{4}
(ii) Is H cyclic? Justify your answer.
(b) Let $\phi: G \rightarrow H$ be an isomorphism of groups.
(i) Prove that, if e_{g} is the identity element of G, then $\left(e_{g}\right) \phi$ is the identity element of H.
(ii) Prove that, for any $a \in G$,

$$
\left(a^{-1}\right) \phi=[(a) \phi]^{-1}
$$

(c) Determine all possible solutions

$$
3 x \equiv 5(\bmod 11)
$$

QUESTION 4

(a) Let $\alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 8 & 1 & 7 & 5 & 3 & 4 & 1\end{array}\right)$ and $\beta=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 1 & 8 & 3 & 4 & 5 & 2 & 6\end{array}\right)$
(a) Express α and β as products of disjoint cycles, and then as products of transpositions. For each of them, say whether it is an even permutation or an odd one. [7]
(b) Compute $\alpha^{-1}, \quad \beta^{-1} \alpha, \quad(\alpha \beta)^{-1}$
(c) Find the order of β and compute β^{2013}.

QUESTION 5

(a) Prove that every subgroup of a cyclic group is cyclic.
(b)Let H be the subgroup of \mathbb{Z}_{20} generated by the element 8. i.e. $H=\langle 8\rangle$. Find all cosets of H in \mathbb{Z}_{20}
(c) Prove that if G is a group and that $\forall a \in G, \quad a^{2}=e$ then G is abelian.

QUESTION 6

(a) Let G be the set of all 2×2 matrices of the form

$$
\left(\begin{array}{ll}
a & o \\
b & c
\end{array}\right)
$$

where $a, b, c, \in \mathbb{Q}, a c \neq 0$.
Show that, with respect to matrix multiplication, G is a group
(b) Solve the system
$3 x \equiv 2(\bmod 5)$
$2 x \equiv 1(\bmod 3)$
(c) Give an example of a group satisfying the given conditions or, if there is no such group, say so (Do not prove anything)
(i) A finite non-abelian group
(ii) A non-abelian cyclic group.

QUESTION 7

(a) Find all subgroups of \mathbb{Z}_{20} and draw a lattice diagram.
b) (i) Define a subgroup of a group
(ii) Find the number of elements in the cyclic subgroup $\langle 30\rangle$ of \mathbb{Z}_{42} (Do not list the elements).
(c) Show that \mathbb{R} under addition is isomorphic to \mathbb{R}^{+}under multiplication.

