UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012/13

BSC./B.ED./B.A.S.S III

TITLE OF PAPER	:	ABSTRACT ALGEBRA I
COURSE NUMBER	:	M323
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWEB ANY FIVE OUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) Suppose that d, a, b are positive integers, (a, d) = 1 and that d divides ab. Prove that d divides b. [5]

(b) Let H be a subgroup of a group G and let, for $a, b \in GaRb$ if and only if $a = g^{-1}bg$ for some $g \in H$

Show that R is an equivalence relation on the set G. [6]

(c) The table below may be completed to define a binary operation * on the st $G = \{a, a, b, c\}$ in such a way that (G, *) becomes a group. Assume this is possible and computer the missing entries.

*	e	a	b	с
e	е	a	b	с
а	а	e		b
b	b		a	
с	c	b		а

(d) Prove that, in any group G the indentity element is unique.

[3]

(a) Determine whether the set \mathbb{Q} with respect to the binary operation

$$a * b = a + b - 2013$$

[7]

is a group.

(b) Find the greatest common divisor d of the numbers 102 and 42 and express it in the forms

$$d = 102m + 42n$$
 for some $m, n \in \mathbb{Z}$

[5](c) (i) State Lagrange's Theorem.(ii) Prove that every finite group prime order is cyclic.[6]

(a) Let H be the subset

$$\{\rho_0 = (1), \rho_1 = (1234), \rho_2 = (13)(24), \rho_3 = (1432)\}\$$

of the group D_4 .

(i) Show that H is a subgroup of D_4

(ii) Is H cyclic? Justify your answer.

(b) Let $\phi: G \to H$ be an isomorphism of groups.

(i) Prove that, if e_g is the identity element of G, then $(e_g)\phi$ is the identity element of H.

(ii) Prove that, for any $a \in G$,

$$(a^{-1})\phi = [(a)\phi]^{-1}$$

(c) Determine all possible solutions

 $3x \equiv 5 \pmod{11}$

[4]

[10]

[6]

(a) Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 8 & 1 & 7 & 5 & 3 & 4 & 1 \end{pmatrix}$$
 and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 1 & 8 & 3 & 4 & 5 & 2 & 6 \end{pmatrix}$
(a) Express α and β as products of disjoint cycles, and then as products of transpositions. For each of them, say whether it is an even permutation or an odd one.

[7]

(b) Compute
$$\alpha^{-1}$$
, $\beta^{-1}\alpha$, $(\alpha\beta)^{-1}$ [7]

[7]

(c) Find the order of β and compute β^{2013} .

QUESTION 5

(a) Prove that every subgroup of a cyclic group is cyclic. [8] (b)Let H be the subgroup of \mathbb{Z}_{20} generated by the element 8. i.e. $H = \langle 8 \rangle$. Find all cosets of H in \mathbb{Z}_{20} [6]

(c) Prove that if G is a group and that $\forall a \in G$, $a^2 = e$ then G is abelian. [6]

(a) Let G be the set of all 2×2 matrices of the form

$$\left(\begin{array}{cc}a&o\\b&c\end{array}\right)$$

where $a, b, c, \in \mathbb{Q}, ac \neq 0$.

Show that, with respect to matrix multiplication, G is a group

[8]

[8]

[4]

[8]

(b) Solve the system

$$3x \equiv 2(mod \ 5)$$

1

 $2x \equiv 1 (mod \ 3)$

(c) Give an example of a group satisfying the given conditions or, if there is no such group, say so (Do not prove anything)

(i) A finite non-abelian group

(ii) A non-abelian cyclic group.

QUESTION 7

(a) Find all subgroups of \mathbb{Z}_{20} and draw a lattice diagram.

b) (i) Define a subgroup of a group

(ii) Find the number of elements in the cyclic subgroup $\langle 30 \rangle$ of \mathbb{Z}_{42} (Do not list the elements).

(c) Show that \mathbb{R} under addition is isomorphic to \mathbb{R}^+ under multiplication. [12]