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QUESTIONl 

(a) Suppose that d, a, b are positive integers, (a, d) = 1 and that d divides abo Prove 

that d divides b. [5] 

(b) Let H be a subgroup of a group G and let, for a, b, E GaRb if and only if a = g-lbg 

for some 9 E H 

Show that R is an equivalence relation on the set G. [6] 

(c) The table below may be completed to define a binary opertion * on the st G = 

{a, a, b, c} in such a way that (G, *) becomes a group. Assume this is possible and 

computer the missing entries. 

b b a 

C I c b a 

(d) Prove that, in any group G the indentity element is unique. [3] 



QUESTION 2 

(a) Determine whether the set Q with respect to the binary operation 

a *b = a + b - 2013 

is a group. [7] 

(b) Find the greatest common divisor d of the numbers 102 and 42 and express it in 

the forms 

d = 102m + 42n for some m, n E Z 

[5] 

(c) (i) State Lagrange's Theorem. [2] 

(ii) Prove that every finite group prime order is cyclic. [6] 



QUESTION 3 

(a) Let H be the subset 

{Po = (1), PI = (1234), P2 = (13)(24), P3 = (1432)} 

of the group D4 . 

(i) Show that H is a subgroup of D4 

(ii) Is H cyclic? Justify your answer. [10] 

(b) Let ¢ : G -+ H be an isomorphism of groups. 

(i) Prove that, if eg is the identity element of G, then (eg )¢ is the identity element of 

H. 

(ii) Prove that, for any a E G, 

(a- 1)¢ = [(a)¢tl 

[6] 

(c) Determine all possible solutions 

3x =5(mod 11) 

[4] 



QUESTION 4 


( 
(11 2 3 4 5 6 7 8) and /3 = 2 3 4 5 6 7 8)(a) Let a 

681 7 5 341 7 1 8 345 2 6 

(a) Express a and /3 as products of disjoint cycles, and then as products of trans­

positions. For each of them, say whether it is an even permutation or an odd one. 

[7] 

(b) Compute a-I, /3-la, (a/3)-l [7] 

(c) Find the order of /3 and compute /32013. [7] 

QUESTION 5 

(a) Prove that every subgroup of a cyclic group is cyclic. [8] 

(b )Let H be the subgroup of 1.20 generated by the element 8. i.e. H = (8) . Find all 

cosets of H in 1.20 [6] 

a2(c) Prove that if G is a group and that \;/ a E G, = e then G is abelian. [6] 



QUESTION 6 


(a) Let G be the set of all 2 x 2 matrices of the form 

(: :) 

where a, b, c, E Q, ac f. O. 


Show that, with respect to matrix multiplication, G is a group [8] 


(b) Solve the system 


3x == 2{mod 5) 


2x = 1(mod 3) [8] 


(c) Give an example of a group satisfying the given conditions or, if there is no such 


group, say so (Do not prove anything) 


(i) A finite non-abelian group 

(ii) A non-abelian cyclic group. 

[4] 

QUESTION 7 

(a) Find all subgroups of :£20 and draw a lattice diagram. [8] 

b) (i) Define a subgroup of a group 

(ii) Find the number of elements in the cydic subgroup (30) of :£42 (Do not list the 

elements). 

(c) Show that R under addition is isomorphic to IR+ under multiplication. [12] 


