UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2012/13

BSC./B.ED./B.A.S.S III

TITLE OF PAPER	$:$	ABSTRACT ALGEBRA I
COURSE NUMBER	$:$	M323
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Find a prime factorization for each of the numbers: $a=7200, b=3132$.
(b) Use the factorization in (a) above to find $[a, b]$ and (a, b).
(c) Find the number of generators of cyclic groups of order 12 and 42.
(d) Solve the following system

$$
\begin{aligned}
2 x & \equiv 1(\bmod 5) \\
3 x & \equiv 4(\bmod 7)
\end{aligned}
$$

QUESTION 2

(a) Prove that a non-abelian group of order $2 p, p$ prime, contains at least one element of order p.
(b) Give a single numerical example to disprove the following:
"If $k a \equiv k b(\bmod n) ; a, b, k \in \mathbb{Z}$, then $a \equiv b(\bmod n)$ ".
(c) Prove that every group of prime order is cyclic.

QUESTION 3

(a) For \mathbb{Z}_{12}, find all subgroups and give a lattice diagram.
(b)(i) Find all cosets of $H=\langle 6\rangle$ in Z_{18}.
(ii) Show that \mathbb{Z}_{6} and S_{3} are not isomorphic.
(c) Find the number of elements in each of the cyclic subgroups
(i) $\langle 30\rangle$ of \mathbb{Z}_{12}.
(ii) $\langle 15\rangle$ of \mathbb{Z}_{48}.

QUESTION 4

(a) Given the definition of a group. What is an abelian group?
(b) Show that the set \mathbb{Q} with respect to the binary operation

$$
a * b=a+b-2013
$$

is a group
(c) Show that if G is a group, then the left and right cancellateion laws hold in G,
i.e. $a b=a c \Rightarrow b=c$, and $b a=c a \Rightarrow b=c$.

QUESTION 5

(a) State Cayley's theoren [Do not prove].
(b) Define the notion of a normal subgroup of a group.
(c) Consider $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1\end{array}\right)$. Express the permutation as a product of
(i) disjoint cycles
(ii) transposition.
(d) Consider $\Pi=(1456), \sigma=(215)$ and $\rho=(16)(253)$ of S_{6}. Compute
(i) $\Pi \sigma$
(ii) $\sigma \Pi$
(iii) Π^{2} and ρ^{2}.

QUESTION 6

(a) Find $(616,427)$ and express it in the form $616 a+427 b$, where $a, b, \in \mathbb{Z}$.
(b) Find all solutions of linear congruence

$$
153 x \equiv 6(\bmod 12)
$$

(c) For any group G, show: If $(a b)^{-1}=a^{-1} b^{-1}$ for all $a, b \in G$, then G is abelian. [5]
(d) Prove that in any group, the identity element is unique.

QUESTION 7

(a) Given groups G and H, define a group isomorphism ϕ from G to H.
(b) Consider the mapping ϕ from \mathbb{R} under addition to \mathbb{R}^{+}under multiplication given by $(r) \phi=e^{r}$.
(i) Show that ϕ is a group isomorphism.
(ii) What is ker ϕ ?(i.e. the kernel of ϕ)
(c) Let $H=\langle 3\rangle$ be the subgroup of \mathbb{Z}_{12} generated by the element $3 \in \mathbb{Z}_{12}$.
(i) Find all cosets of H in \mathbb{Z}_{12}.
(ii) Give the group table for the quotient/factor group \mathbb{Z}_{12} / H.

