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QUESTION 1 


(a) Find a prime factorization for each of the numbers: a = 7200, b = 3132. [A] 

(b) Use the factorization in (a) above to find [a, b] and (a, b). [6] 

(c) Find the number of generators of cyclic groups of order 12 and 42. [5] 

(d) Solve the following system 

2x l(mod 5) 

3x - 4(mod 7) 

[5] 

QUESTION 2 

(a) Prove that a non-abelian group of order 2p, p prime, contains at least one element 


of order p. [8] 


(b) Give a single numerical example to disprove the following: 


"If ka == kb(mod n); a, b, k E :1:, then a = b(mod n)". [4] 


(c) Prove that every group of prime order is cyclic. [8] 



QUESTION 3 


(a) For ::£12, find all subgroups and give a lattice diagram. [7) 

(b) (i) Find all cosets of H = (6) in Z18' [4] 

(ii) Show that ::£6 and S3 are not isomorphic. [3) 

(c) Find the number of elements in each of the cyclic subgroups 

(i) (30) of ::£12. [3) 

(ii) (15) of ::£48' [3] 

QUESTION 4 

(a) Given the definition of a group. What is an abelian group? [4) 

(b) Show that the set Q with respect to the binary operation 

a *b = a + b 2013 

is a group [8] 

(c) Show that if G is a group, then the left and right cancellate ion laws hold in G, 

i.e. ab = ac :::::> b = c, and ba = ca :::::> b = c. [8] 



QUESTION 5 


(a) State Cayley's theoren [Do not prove]. 	 [3] 

(b) Define the notion of a normal subgroup of a group. 	 [3] 

12345678) ~ 
(c) Consider 	 . Express the permutation as a product of 

(. 826 3 745 1 

U) disjoint cycles 

(ii) transposition. 

(d) Consider TI = (1456), (J = (215) and p = (16)(253) of 86 . Compute 

(i) TI(J (ii) (JTI (iii) TI2 and p2. 	 [8] 

QUESTION 6 

(a) Find (616,427) and express it in the form 616a 427b, where a, b, E Z. [5] 

(b) Find all solutions of linear congruence 

153x 6(mod 12) 

[5] 

(c) For any group G, show: If (abtl = a-1b- 1 for all a, bEG, then G is abelian. [5] 

(d) Prove that 	in any group, the identity element is unique. [5] 



QUESTION 7 


(a) Given groups G and H, define a group isomorphism ¢ from G to H. [4] 

(b) Consider the mapping ¢ from lR. under addition to lR.+ under multiplication given 

by (r)¢ = er . 

(i) Show that ¢ is a group isomorphism. 
I 

(ii) What is ker ¢?(Le. the kernel of ¢) 

[6] 

[2] 

(c) Let H = (3) be the subgroup of Z12 generated by the element 3 E Z12. 

(i) Find all cosets of H in Z12. [4] 

(ii) Give the group table for the quotient/factor group Z12/ H. [4] 


