UNIVERSITY OF SWAZILAND

۶.

SUPPLEMENTARY EXAMINATION 2012/13

BSC./B.ED./B.A.S.S III

TITLE OF PAPER	:	ABSTRACT ALGEBRA I
COURSE NUMBER	:	M323
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWEP ANY FIVE OUESTIONS
SPECIAL REQUIREMENTS	:	2. ANSWER ANY <u>FIVE</u> QUESTIONS NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) Find a prime factorization for each of the numbers: $a = 7200, b = 3132$.	[,4]
(b) Use the factorization in (a) above to find $[a, b]$ and (a, b) .	[6]
(c) Find the number of generators of cyclic groups of order 12 and 42.	[5]
(d) Solve the following system	

 $2x \equiv 1 \pmod{5}$ $3x \equiv 4 \pmod{7}$

[5]

[8]

QUESTION 2

(a) Prove that a non-abelian group of order 2p, p prime, contains at least one element of order p. [8]

(b) Give a single numerical example to **disprove** the following:

"If $ka \equiv kb \pmod{n}$; $a, b, k \in \mathbb{Z}$, then $a \equiv b \pmod{n}$ ". [4]

(c) Prove that every group of prime order is cyclic.

(a) For \mathbb{Z}_{12} , find all subgroups and give a lattice diagram.	[7]
(b)(i) Find all cosets of $H = \langle 6 \rangle$ in Z_{18} .	[4]
(ii) Show that \mathbb{Z}_6 and S_3 are not isomorphic.	[3]
(c) Find the number of elements in each of the cyclic subgroups $($	
(i) $\langle 30 \rangle$ of \mathbb{Z}_{12} .	[3]
(ii) $\langle 15 \rangle$ of \mathbb{Z}_{48} .	[3]

QUESTION 4

(a) Given the definition of a group. What is an abelian group?	[4]
(b) Show that the set \mathbb{Q} with respect to the binary operation	

$$a * b = a + b - 2013$$

is a group

(c) Show that if G is a group, then the left and right cancellateion laws hold in G,

i.e. $ab = ac \Rightarrow b = c$, and $ba = ca \Rightarrow b = c$.

[8]

[8]

(a) State Cayley's theoren [Do not prove]. [3]
(b) Define the notion of a normal subgroup of a group. [3]
(c) Consider
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix}$$
. Express the permutation as a product of
(i) disjoint cycles
(ii) transposition.
(d) Consider $\Pi = (1456), \sigma = (215)$ and $\rho = (16)(253)$ of S_6 . Compute
(i) $\Pi \sigma$ (ii) $\sigma \Pi$ (iii) Π^2 and ρ^2 . [8]

QUESTION 6

(a) Find (616, 427) and express it in the form 616a + 427b, where $a, b \in \mathbb{Z}$. [5]

(b) Find all solutions of linear congruence

•

$$153x \equiv 6(mod \ 12)$$

[5]

(c) For any group G, show: If (ab)⁻¹ = a⁻¹b⁻¹ for all a, b ∈ G, then G is abelian. [5]
(d) Prove that in any group, the identity element is unique. [5]

(a) Given groups G and H, define a group isomorphism ϕ from G to H.	[4]
(b) Consider the mapping ϕ from \mathbb{R} under addition to \mathbb{R}^+ under multiplication	given
by $(r)\phi = e^r$.	
(i) Show that ϕ is a group isomorphism.	[6]
(ii) What is ker ϕ ?(i.e. the kernel of ϕ)	[2]
(c) Let $H = \langle 3 \rangle$ be the subgroup of \mathbb{Z}_{12} generated by the element $3 \in \mathbb{Z}_{12}$.	
(i) Find all cosets of H in \mathbb{Z}_{12} .	[4]
(ii) Give the group table for the quotient/factor group \mathbb{Z}_{12}/H .	$\left[4 ight]$