UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012/2013
BSc. /BEd. /B.A.S.S III

TITLE OF PAPER : REAL ANALYSIS

COURSE NUMBER : M 331

TIME ALLOWED : THREE (3) HOURS

INSTRUCTIONS : 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.
2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) Prove that $n<3^{n}, \forall n \in \mathbb{N}$.
(b) i. Find all $x \in \mathbb{R}$ that satisfy the inequality $4<|x-2|+|x+1|<5$.
ii. Explain precisely the statement:
"A non-empty set S of real numbers is bounded". [2 marks]
iii. Let $S=\{x \in \mathbb{R}: 4<|x-2|+|x+1|<5\}$. Is S bounded? Justify your answer.
(c) i. Let S be a non-empty subset of \mathbb{R}. Explain precisely each of the following statements.
A. A real number u is an upper bound of S.
B. A real number v is a supremum of S.
ii. If $S \subseteq \mathbb{R}$ contains one of its upper bounds, show that this upper bound is the supremum of S.
[3 marks]

QUESTION 2

2. Let $\left(x_{n}\right)$ be a sequence of real numbers.
(a) i. Explain precisely the statement " $\left(x_{n}\right)$ is convergent".
[2 marks]
ii. A. Prove that if $\left(x_{n}\right)$ is convergent then $\left(\left|x_{n}\right|\right)$ is also convergent.
B. Is the converse of 2(a)iiA true? Justify your answer. [2 marks]
(b) i. Explain precisely each of the following statements.
A. $\left(x_{n}\right)$ is bounded.
[2 marks]
B. $\left(x_{n}\right)$ is monotone.
[2 marks]
C. $\left(x_{n}\right)$ is Cauchy.
ii. State the monotone convergence theorem for $\left(x_{n}\right)$.
iii. Prove that if $\left(x_{n}\right)$ is both bounded and monotone increasing then $\left(x_{n}\right)$ is Cauchy.

QUESTION 3

3. (a) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be functions, and let $c \in(a, b)$.
i. Explain precisely the statement " f is continuous at c ". [2 marks]
ii. Show that the absolute value function $f(x):=|x|$ is continuous at every point $c \in \mathbb{R}$.
iii. Let $K>0$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the condition

$$
|f(x)-f(y)| \leq K|x-y|, \forall x, y \in \mathbb{R}
$$

Show that f is continuous at every point $c \in \mathbb{R}$.
[4 marks]
iv. Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ that is not continuous at $x=\frac{1}{2}$.
[2 marks]
(b) State the Intermediate value theorem and use it to show that the equation $\cos x=x^{2}$ has a solution in the interval $[0, \pi / 2]$.
(c) Is the following statement true or false? Justify your answer.

Given any 2 functions $f, g:[0,1] \rightarrow \mathbb{R}$, if $f+g$ is continuous then so are both f and g.

QUESTION 4

4. (a) Let $f:(a, b) \rightarrow \mathbb{R}$ be a function.
i. Explain the statement " f is differentiable at $c \in(a, b)$ ". [2 marks]
ii. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x):=\left\{\begin{array}{cc}
x+1, & x \leq 0 \\
e^{x}, & x>0
\end{array}\right.
$$

Show that f is differentiable at $x=0$.
(b) i. State the Mean value theorem for derivatives.
ii. Use the Mean value theorem for derivatives to prove each of the following statements.
A. Suppose that $f ;[0,1] \rightarrow \mathbb{R}$ is continuous on $[0,1]$ and differentiable on $(0,1)$, and that $f(0)=0, f(1)=1$.
Show that $\exists c_{1} \in(0,1): f^{\prime}\left(c_{1}\right)=1$. [2 marks]
B. $-x \leq \sin x \leq x, \forall x>0$.
C. If $x>1$ then $\frac{x-1}{x}<\ln x<x-1$.

QUESTION 5

5. (a) Let $\sum a_{n}$ be a series in \mathbb{R}. Precisely explain the following statements.
i. $\sum a_{n}$ converges.
[2 marks]
ii. $\sum a_{n}$ is absolutely convergent.
[1 marks]
(b) Prove that if both $\sum x_{n}$ and $\sum y_{n}$ converge then $\sum\left(x_{n}+y_{n}\right)$ also converges.
(c) Determine whether each of the following statements is true or false.

Justify your answers.
i. If $\sum a_{n}$ converges, then $\sum a_{n}$ converges absolutely. [2 marks]
ii. If $\sum a_{n}$ with $a_{n}>0$ converges, then $\sum \sqrt{a_{n}}$ converges. [2 marks]
iii. If $\sum a_{n}$ converges, then $\sum a_{n}$ is absolutely convergent. [2 marks]
(d) State the Cauchy convergence criterion for series.
[2 marks]
(e) Let $\left(b_{n}\right)$ be a bounded sequence of real numbers. Show that if $\sum a_{n}$ is absolutely convergent, then the series $\sum a_{n} b_{n}$ converges. [5 marks]

QUESTION 6

6. (a) Determine whether each of the following statements is true or false. Justify your answer.
i. If a function $f:[0,1] \rightarrow \mathbb{R}$ is bounded on $[0,1]$ then f is integrable on $[0,1]$.
[2 marks]
ii. If a function $f:[0,1] \rightarrow \mathbb{R}$ is integrable on $[0,1]$ then f is continuous on $[0,1]$.
[2 marks]
iii. If a function $f:[-1,1] \rightarrow \mathbb{R}$ is integrable on $[-1,1]$ then f is differentiable on $[-1,1]$.
[2 marks]
(b) Prove in detail that the function $f:[0,2] \rightarrow \mathbb{R}$ defined by

$$
f(x):= \begin{cases}0, & 0 \leq x<1 \\ 1, & 1 \leq x<2\end{cases}
$$

is Riemann integrable and find $\int_{0}^{2} f$.
[10 marks]
(c) Show that if $f:[a, b] \rightarrow \mathbb{R}$ is a bounded, Riemann integrable function, then $F:[a, b] \rightarrow \mathbb{R}$ with $F(x)=\int_{x}^{a} f$ is a continuous function. [4 marks]

QUESTION 7

7. (a) i. State the infimum property of \mathbb{R}.
ii. Let u be a lower bound for a non-empty subset V of \mathbb{R}. State a necessary and sufficient condition for u to equal $\inf V$. [2 marks]
iii. Let S and T be non-empty subsets of \mathbb{R}. Define
$S+T:=\{x+y \in \mathbb{R}: x \in S, y \in T\}$.
Use your result of 7 (a)ii above (or otherwise) to show that if both S and T are bounded below then $\inf (S+T)=\inf S+\inf T$. [6 marks]
(b) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is twice differentiable on \mathbb{R} and that $a, b \in \mathbb{R}$ with $a<b$. Let $g, h: \mathbb{R} \rightarrow \mathbb{R}$ be functions defined by

$$
\begin{aligned}
& g(x):=f(b)-f(x)-(b-x) f^{\prime}(x), \\
& h(x):=(b-a)^{2} g(x)-(b-x)^{2} g(a)
\end{aligned}
$$

i. Show that $h(a)=h(b)$.
ii. State Rolle's theorem.
iii. Use Rolle's theorem (or otherwise) to show that

$$
f(b)=f(a)+(b-a) f^{\prime}(a)+\frac{1}{2}(b-a)^{2} f^{\prime \prime}(c)
$$

for some $c \in(a, b)$.

