UNIVERSITY OF SWAZILAND

2

FINAL EXAMINATION 2012/2013

BSc. /BEd. /B.A.S.S III

TITLE OF PAPER	:	REAL ANALYSIS
COURSE NUMBER	:	M 331
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF
		<u>SEVEN</u> QUESTIONS.
		2. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

1.	(a)	Pro	ve that $n < 3^n$, $\forall n \in \mathbb{N}$.	[5 marks]
	(b)	i. 	Find all $x \in \mathbb{R}$ that satisfy the inequality 4 < x-2 + x+1 < 5.	[4 marks]
		11.	Explain precisely the statement: "A non-empty set S of real numbers is bounded".	[2 marks]
		iii.	Let $S = \{x \in \mathbb{R} : 4 < x - 2 + x + 1 < 5\}$. Is S bounded? Justify your answer.	[2 marks]
	(c)	i.	Let S be a non-empty subset of \mathbb{R} . Explain precisely explosing statements.	ach of the
			A. A real number u is an upper bound of S .	[2 marks]
			B. A real number v is a supremum of S .	[2 marks]
		ii.	If $S \subseteq \mathbb{R}$ contains one of its upper bounds, show that this up	per bound
			is the supremum of S .	[3 marks]

QUESTION 2

2.	Let	(x_n)	be	a	sequence	of	real	numbers.
----	-----	---------	----	---	----------	----	------	----------

•

(a)	i. Explain precisely the statement " (x_n) is convergent".	[2 marks]
	ii. A. Prove that if (x_n) is convergent then (x_n) is also	
	convergent.	[4 marks]
	B. Is the converse of 2(a)iiA true? Justify your answer.	[2 marks]
(b)	i. Explain precisely each of the following statements.	
	A. (x_n) is bounded.	[2 marks]
	B. (x_n) is monotone.	[2 marks]
	C. (x_n) is Cauchy.	[2 marks]
	ii. State the monotone convergence theorem for (x_n) .	[2 marks]
	iii Drows that if (n) is both bounded and monotone increasing	then (m)

iii. Prove that if (x_n) is both bounded and monotone increasing then (x_n) is Cauchy. [4 marks]

3. (a) Let
$$f, g : [a, b] \to \mathbb{R}$$
 be functions, and let $c \in (a, b)$.

- i. Explain precisely the statement "f is continuous at c". [2 marks]
- ii. Show that the absolute value function f(x) := |x| is continuous at every point $c \in \mathbb{R}$. [4 marks]
- iii. Let K > 0 and let $f : \mathbb{R} \to \mathbb{R}$ satisfy the condition

$$|f(x) - f(y)| \le K|x - y|, \, \forall x, y \in \mathbb{R}$$

Show that f is continuous at every point $c \in \mathbb{R}$. [4 marks]

- iv. Give an example of a function $f: [0,1] \to \mathbb{R}$ that is **not** continuous at $x = \frac{1}{2}$. [2 marks]
- (b) State the Intermediate value theorem and use it to show that the equation $\cos x = x^2$ has a solution in the interval $[0, \pi/2]$. [5 marks]
- (c) Is the following statement true or false? Justify your answer.
 Given any 2 functions f, g: [0,1] → ℝ, if f + g is continuous then so are both f and g.
 [3 marks]

QUESTION 4

4. (a) Let $f:(a,b) \to \mathbb{R}$ be a function.

i. Explain the statement "f is differentiable at $c \in (a, b)$ ". [2 marks] ii. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \left\{egin{array}{cc} x+1, & x\leq 0 \ e^x, & x>0 \end{array}
ight.$$

Show that f is differentiable at x = 0. [4 marks]

(b) i. State the Mean value theorem for derivatives. [2 marks]

- ii. Use the Mean value theorem for derivatives to prove each of the following statements.
 - A. Suppose that $f : [0,1] \to \mathbb{R}$ is continuous on [0,1] and differentiable on (0,1), and that f(0) = 0, f(1) = 1. Show that $\exists c_1 \in (0,1) : f'(c_1) = 1$. [2 marks]
 - B. $-x \le \sin x \le x, \forall x > 0.$ [5 marks]
 - C. If x > 1 then $\frac{x-1}{x} < \ln x < x 1$. [5 marks]

5.	(a)	Let	\sum	an I	be	a s	eries	in	R.	Pre	ecisel	v exi	olain	the	fol	lowing	state	ements.
	()		1 1													0		

- i. $\sum a_n$ converges. [2 marks]
- ii. $\sum a_n$ is absolutely convergent. [1 marks]
- (b) Prove that if both $\sum x_n$ and $\sum y_n$ converge then $\sum (x_n + y_n)$ also converges. [4 marks]

(c) Determine whether each of the following statements is true or false. Justify your answers.

- i. If $\sum a_n$ converges, then $\sum a_n$ converges absolutely. [2 marks]
- ii. If $\sum a_n$ with $a_n > 0$ converges, then $\sum \sqrt{a_n}$ converges. [2 marks]
- iii. If $\sum a_n$ converges, then $\sum a_n$ is absolutely convergent. [2 marks]

(d) State the Cauchy convergence criterion for series. [2 marks]

(e) Let (b_n) be a bounded sequence of real numbers. Show that if $\sum a_n$ is absolutely convergent, then the series $\sum a_n b_n$ converges. [5 marks]

QUESTION 6

- 6. (a) Determine whether each of the following statements is true or false. Justify your answer.
 - i. If a function $f:[0,1] \to \mathbb{R}$ is bounded on [0,1] then f is integrable on [0,1]. [2 marks]
 - ii. If a function $f:[0,1] \to \mathbb{R}$ is integrable on [0,1] then f is continuous on [0,1]. [2 marks]
 - iii. If a function $f : [-1,1] \to \mathbb{R}$ is integrable on [-1,1] then f is differentiable on [-1,1]. [2 marks]
 - (b) Prove in detail that the function $f:[0,2] \to \mathbb{R}$ defined by

$$f(x) := \begin{cases} 0, & 0 \le x < 1\\ 1, & 1 \le x < 2 \end{cases}$$

is Riemann integrable and find $\int_0^2 f$.

- [10 marks]
- (c) Show that if $f : [a, b] \to \mathbb{R}$ is a bounded, Riemann integrable function, then $F : [a, b] \to \mathbb{R}$ with $F(x) = \int_x^a f$ is a continuous function. [4 marks]

- 7. (a) i. State the infimum property of \mathbb{R} . [2 marks] ii. Let u be a lower bound for a non-empty subset V of \mathbb{R} . State a necessary and sufficient condition for u to equal inf V. [2 marks]
 - iii. Let S and T be non-empty subsets of \mathbb{R} . Define $S + T := \{ x + y \in \mathbb{R} : x \in S, y \in T \}.$ Use your result of 7(a)ii above (or otherwise) to show that if both S and T are bounded below then $\inf(S+T) = \inf S + \inf T$. [6 marks]
 - (b) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is twice differentiable on \mathbb{R} and that $a, b \in \mathbb{R}$ with a < b. Let $g, h : \mathbb{R} \to \mathbb{R}$ be functions defined by

$$egin{aligned} g(x) &:= f(b) - f(x) - (b-x)f'(x), \ h(x) &:= (b-a)^2 g(x) - (b-x)^2 g(a) \end{aligned}$$

i. Show that h(a) = h(b).

- ii. State Rolle's theorem.
- iii. Use Rolle's theorem (or otherwise) to show that

$$f(b) = f(a) + (b-a)f'(a) + \frac{1}{2}(b-a)^2 f''(c)$$

for some $c \in (a, b)$.

[6 marks]

[2 marks]

[2 marks]