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QUESTION 1 

1. 	 (a) Prove that n < 3n , Vn E N. [5 marks] 

(b) 	 L Find all x E 1R that satisfy the inequality 

4 < Ix 21 + Ix + 11 < 5. [4 marks] 

ii. Explain precisely the statement: 
"A non-empty set S of real numbers is bounded". [2 marks] 

iii. Let S = {x E 1R : 4 < Ix - 21 + Ix + 11 < 5}. Is S bounded? 
Justify your answer. [2 marks] 

(c) 	 1. Let S be a non-empty subset of JEt Explain precisely each of the 
following statements. 

A. .A real number u is an upper bound of S. 	 [2 marks] 

B. 	A real number v is a supremum of S. [2 marks] 

ii. 	If S <;;;; 1R contains one of its upper bounds, show that this upper bound 
is the supremum of S. [3 marks] 

QUESTION 2 

2. 	 Let (xn) be a sequence of real numbers. 

(a) i. 	 Explain precisely the statement "(xn) is convergent". [2 marks] 

Ii. 	 A. Prove that if (Xn) is convergent then (Ixni) is also 
convergent. [4 marks] 

B. 	Is the converse of 2(a)iiA true? Justify your answer. [2 marks] 

(b) 1. 	 Explain precisely each of the following statements. 

A. (xn) 	is bounded. [2 marks] 

B. (xn) 	is monotone. [2 marks] 

C. (xn) 	is Cauchy. [2 marks] 

ii. 	State the monotone convergence theorem for (xrJ [2 marks] 

iii. 	Prove that if (Xn) is both bounded and monotone increasing then (xn) 
is Cauchy. [4 marks] 



QUESTION 3 

3. 	 (a) Let f, 9 : [a, b] -+ JR be functions, and let e E (a, b). 

i. 	 Explain precisely the statement "f is continuous at e". [2 marks] 

ii. Show that the absolute value function f{x) Ixl is continuous at 
every point e E R [4 marks] 

iii. Let K > °and let f : JR -+ JR satisfy the condition 

If(x) - f(y)1 ~ Klx - yl, 'Vx, y E JR 

Show that f is continuous at every point c E JR. [4 marks] 

iv. Give an example of a function f : [0,1] -+ JR that is not continuous at 

x 	 . ~. [2 marks] 

(b) 	State the Intermediate value theorem and use it to show that the equation 
cos x = x2 has a solution in the interval [0, 7r/2]. [5 marks] 

(c) Is the following statement true or false? Justify your answer. 

Given any 2 functions f, 9 : [0, 1] -+ JR, if f + 9 is continuous then so are 
both f and g. [3 marks] 

QUESTION 4 

4. 	 (a) Let f : (a, b) -+ JR be a function. 

i. 	 Explain the statement "f is differentiable at c E (a, b)". [2 marks] 

ii. Let f : JR -+ JR be defined by 

X + 1, x::; 0
f(x) 

{ eX, x> 0 

Show that f is differentiable at x = 0. 	 [4 marks] 

(b) i. State the Mean value theorem for derivatives. 	 [2 marks] 

ii. Use 	the Mean value theorem for derivatives to prove each of the 
following statements. 

A. 	 Suppose that f : [0,1] -+ JR is continuous on [0,1] and 
differentiable on (0,1), and that f(O) = 0, f(l) = 1. 

Show that 3el E (0,1) : !'(Cl) = 1. [2 marks] 

B. 	 -x::; sin x ::; x, 'Vx > 0. [5 marks] 
x 1 

C. 	If x > 1 then < In x < x - 1. [5 marks] 
x 



QUESTION 5 

5. 	 (a) Let L: an be a series in lR. Precisely explain the following statements. 

i. 	 L: an converges. [2 marks] 

ii. 	L: an is absolutely convergent. [1 marks] 

(b) 	 Prove that if both L: Xn and L: Yn converge then L:(xn + Yn) also 

converges. [4 marks] 

(c) 	 Determine whether each of the following statements is true or false. 

Justify your answers. 

i. 	 If L: an converges, then L: an converges absolutely. [2 marks] 

ii. 	If ~ an with an > a converges, then L: va;,. converges. [2 marks] 

iii. 	If L: an converges, then L: an is absolutely convergent. [2 marks] 

(d) 	State the Cauchy convergence criterion for series. [2 marks] 

(e) 	 Let (bn) be a bounded sequence of real numbers. Show that if L: an is 
absolutely convergent, then the series L: anbn converges. [5 marks] 

QUESTION 6 

6. 	 (a) Determine whether each of the following statements is true or false. Justify 
your answer. 

i. 	 If a function f : [0,1] --t 1R is bounded on [0,1] then f is integrable on 
[0,1]. [2 marks] 

ii. 	If a function f : [0,1] --t 1R is integrable on [0,1] then f is continuous 
on [0,1]. [2 marks] 

iii. 	If a function f : [ -1, 1] --t 1R is integrable on [-1, 1] then f is 
differentiable on [-1, 1]. [2 marks] 

(b) 	 Prove in detail that the function f : [0,2] --t 1R defined by 

O::Sx<lf(x) := { 0,
1, 	 l::Sx<2 

is Riemann integrable and find I; f· 	 [10 marks] 

(c) 	 Show that if f : [a, b] --t 1R is a bounded, Riemann integrable function, 
then F: [a, b] --t 1R with F(x) = Ixa f is a continuous function. [4 marks] 



QUESTION 7 

7. (a) i. State the infimum property of R 	 [2 marks] 

ii. Let 	u be a lower bound for a non-empty subset V of R State a 
necessary and sufficient condition for u to equal inf V. [2 marks] 

iii. Let S and T be non-empty subsets of R Define 
S + T := {x + Y E lR : XES, YET}. 
Use your result of 7(a)ii above (or otherwise) to show that if both S 
and T are bounded below then inf(S +T) = inf S + infT. [6 marks] 

(b) Suppose that f : lR -7 lR is twice differentiable on lR and that a, b E lR with 
a < b. Let g, h : lR -7 lR be functions defined by 

g(x) := f(b) - f(x) (b x)f'(x), 

h(x) :=(b - a)2g(x) (b - x)2g(a) 

i. 	Show that h(a) = h(b). [2 marks] 

ii. State Rolle's theorem. 	 [2 marks] 

iii. 	Use Rolle's theorem (or otherwise) to show that 

1
f(b) = f(a) + (b - a)f'(a) + 2'(b - a)2 f"(c) 

for some c E (a, b). 	 [6 marks] 


