UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2012/2013

BSc. /BEd. /B.A.S.S III

TITLE OF PAPER	:	REAL ANALYSIS
COURSE NUMBER	:	M 331
TIME ALLOWED	•	THREE (3) HOURS
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
		2. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

1.	(a)	Let	$a, b > 0$. Prove that $a < b \iff a^n < b^n, \forall n \in \mathbb{N}$.	[5 marks]
	(b)	i.	Find all $x \in \mathbb{R}$ that satisfy the inequality $ x-2 \leq x+1$.	[4 marks]
		ii.	Explain precisely the statement: "A non-empty set S of real numbers is bounded".	[2 marks]
:		iii.	Let $S = \{x \in \mathbb{R} : x - 2 \le x + 1\}$. Is S bounded?	
1			Justify your answer.	[2 marks]
	(c)	i.	Let S be a non-empty subset of \mathbb{R} . Explain precisely e following statements.	ach of the
			A. A real number u is an lower bound of S .	[2 marks]
			B. A real number v is an infimum of S .	[2 marks]
		ii.	If $S \subseteq \mathbb{R}$ contains one of its lower bounds, show that this lo	wer bound
			is the infimum of S .	[3 marks]

QUESTION 2

2.	(a)	Let (a	(x_n)	be a	sequence	of	real	numbers.	Explain	precisely	each	of	the
		follow	ing s	state	ments.								

i.	(x_n) is convergent.	[2 marks]
ii.	(x_n) is Cauchy.	[2 marks]
iii.	(x_n) is bounded.	[2 marks]
i.	Let $(x_n), (y_n)$ be sequences of real numbers. Prov (y_n) are both Cauchy, then $(x_n + y_n)$ is also Cauch	

ii. Let $c \in \mathbb{R}$. Show that the constant sequence (c) is Cauchy. [4 marks] iii. Show directly from the definition that

$$\left(\frac{n+1}{n}\right)$$

is a Cauchy sequence.

[4 marks]

(c) Consider the statement:

(b)

"Every bounded sequence of real numbers is convergent" Is this statement true or false? Justify your answer. [2 marks]

- 3. (a) Let $f, g: [a, b] \to \mathbb{R}$ be functions, and let $c \in (a, b)$.
 - i. Explain precisely the statement "f is continuous at c". [2 marks]
 - ii. Show that if both f and g are continuous at c, then the sum function f + g is continuous at c. [4 marks]
 - iii. Is the converse of (3(a)ii) true of false? Justify your answer. [2 marks]
 - iv. Show that if both f and g are continuous at c, then the product function fg is continuous at c. [4 marks]

v. Is the converse of (3(a)iv) true of false? Justify your answer.[2 marks]

(b) State the Intermediate value theorem and use it to show that the equation $x^3 + 4x^2 - 5 = 0$ has a solution in the interval [1,2]. [6 marks]

QUESTION 4

- 4. (a) Let $f:(a,b) \to \mathbb{R}$ be a function.
 - i. Explain the statement "f is differentiable at $c \in (a, b)$ ". [2 marks] ii. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} e^x, & x \le 0\\ x+1, & x > 0 \end{cases}$$

A. Show that f is differentiable at x = 0. [4 marks]

B. Is f continuous at x = 0? Justify your answer. [2 marks]

- (b) i. State the Mean value theorem for derivatives. [2 marks]
 - ii. Use the Mean value theorem for derivatives to prove each of the following statements.

A.
$$|\sin x - \sin y| \le |x - y|, \forall x, y \in \mathbb{R}.$$
 [5 marks]

B. Let I be an interval. Let $f: I \to \mathbb{R}$ be differentiable on I. Show that if f' > 0 on I, then f is strictly increasing on I. [5 marks]

(a) Let $\sum a_n$ be a series in \mathbb{R} . Precisely explain the following state	ements.
i. $\sum a_n$ converges.	[2 marks]
ii. $\sum a_n$ is absolutely convergent.	[1 marks]
(b) i. Prove that if $\sum x_n$ converges, then $\sum x_n$ is absolutely	
convergent.	[4 marks]
ii. Is the converse of 5(b)i true? Justify your answer.	[2 marks]
(c) If series $\sum x_n$ converges, then $\lim(x_n) = 0$.	[4 marks]
(d) State the Cauchy convergence criterion for series.	[2 marks]

(e) Let (a_n) be a bounded sequence of real numbers. Show that if $\sum a_n$ is absolutely convergent, then the series $\sum a_n^2$ converges. [5 marks]

QUESTION 6

- 6. (a) Let $f : [a, b] \to \mathbb{R}$. Use upper and lower sums to define the Riemann integral $\int_a^b f(x) dx$. [10 marks]
 - (b) From the definition of the Riemann integral show that

$$\int_0^1 x^3 dx = \frac{1}{4}$$

Assume without proof that

5.

$$1^{3} + 2^{3} + \dots + n^{3} = \left[\frac{m(m+1)}{2}\right]^{2}, \forall n \in \mathbb{N}.$$

[10 marks]

7. (a) Use the Mean Value Theorem to show that;

i.
$$\frac{1}{7} < \sqrt{38} - 6 < \frac{1}{6}$$
. [5 marks]

ii.
$$\frac{1}{2} < \ln 2 < 1.$$
 [5 marks]

(b) i. State the supremum property of \mathbb{R} .

[2 marks]

ii. Let u be an upper bound for a non-empty subset V of \mathbb{R} . State a necessary and sufficient condition for u to equal sup V. [2 marks]

iii. Let S and T be non-empty subsets of \mathbb{R} . Define $S + T := \{x + y \in \mathbb{R} : x \in S, y \in T\}.$

Use your result of 7(b)ii above (or otherwise) to show that if both S and T are bounded below then $\sup(S+T) = \sup S + \sup T$.[6 marks]