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QUESTION 1 

1. 	 (a) Let a,b > O. Prove that a < b ~ an < bn, \In E N. [5 marks] 

(b) i. 	 Find all x E lR that satisfy the inequality Ix - 21 ::;; x + 1. [4 marks] 

ii. 	Explain precisely the statement: 
"A non-empty set S of real numbers is bounded". [2 marks] 

iii. Let S = {x E lR: Ix - 21::;; x + I}. Is S bounded? 
Justify your answer. [2 marks] 

(c) 	 i. Let S be a non-empty subset of lR. Explain precisely each of the 
following statements. 

A. 	A real number u is an lower bound of S. [2 marks] 

B. 	A real number v is an infimum of S. [2 marks] 

ii. 	 If S ~ lR contains one of its lower bounds, show that this lower bound 
is the infimum of S. [3 marks] 

QUESTION 2 

2. 	 (a) Let (xn) be a sequence of real numbers. Explain precisely each of the 
following statements. 

1. 	 (Xn) is convergent. [2 marks] 

ii. 	 (xn) is Cauchy. [2 marks] 

iii. 	 (xn) is bounded. [2 marks] 

(b) 	 i. Let (xn), (Yn) be sequences of real numbers. Prove that if (xn) and 
(Yn) are both Cauchy, then (Xn + Yn) is also Cauchy. [4 marks) 

ii. 	Let c E 1R. Show that the constant sequence (c) is Cauchy. [4 marks] 

iii. 	 Show directly from the definition that 

(n: 1) 
is a Cauchy sequence. 	 [4 marks) 

(c) Consider the statement: 

"Every bounded sequence of real numbers is convergent" 

Is this statement true or false? Justify your answer. [2 marks) 



QUESTION 3 

3. 	 (a) Let 1,9: [a,b]-+IR be functions, and let cE (a,b). 

i. 	 Explain precisely the statement "1 is continuous at c". [2 marks] 

ii. Show that if both 1 and 9 are continuous at c, then the sum function 
1 + 9 is continuous at c. [4 marks] 

iii. Is the converse of (3(a)ii) true of false? Justify your answer.[2 marks] 

iv. Show 	that if both 1 and 9 are continuous at c, then the product 
function 19 is continuous at c. [4 marks] 

v. 	 Is the converse of (3(a)iv) true of false? Justify your answer. [2 marks] 

(b) State the Intermediate value theorem and use it to show that the equation 
x3 + 4x2 - 5 = 0 has a solution in the interval [1,2]. [6 marks] 

QUESTION 4 

4. 	 (a) Let 1 : (a, b) -+ IR be a function. 

i. 	Explain the statement "1 is differentiable at c E (a, bt . [2 marks] 

ii. 	 Let 1 : IR -+ IR be defined by 

eX, x:::; 0 
l(x) := { x + 1, x> 0 

A. 	 Show that 1 is differentiable at x = O. [4 marks] 

B. 	 Is 1 continuous at x = O? Justify your answer. [2 marks] 

(b) i. State the Mean value theorem for derivatives. 	 [2 marks] 

ii. 	 Use the Mean value theorem for derivatives to prove each of the 
following statements. 

A. 	 Isinx - sin yl :::; Ix - yl, "Ix, y E R [5 marks] 

B. Let I be an interval. Let 1 : I -+ IR be differentiable on I. Show 
that if l' > 0 on I, then 1 is strictly increasing on I. [5 marks] 



QUESTION 5 

5. 	 (a) Let L an be a series in lR. Precisely explain the following statements. 

i. L an 	converges. [2 marks] 

ii. 	L an is absolutely convergent. [:I. marks] 

(b) 	 i. Prove that if L Xn converges, then L Xn is absolutely 
convergent. [4 marks] 

ii. 	 Is the converse of 5(b)i true? Justify your answer. [2 marks] 

(c) 	If series LXn converges~ then lim(xn) = O. [4 marks] 

(d) State the Cauchy convergence criterion for series. 	 [2 marks] 

(e) 	Let (an) be a bounded sequence of real numbers. Show that if L an is 
absolutely convergent, then the series L a~ converges. [5 marks] 

QUESTION 6 

6. 	 (a) Let f : [a, b] ---t 1R. Use upper and lower sums to define the Riemann 
integral J: f(x)dx. [10 marks] 

(b) From the definition of the Riemann integral show that 

11 1 
x3 dx =­

o 4 

Assume without proof that 

13 + 23 + ... + n3 = [m(m + l)f, \::In E N. 
2 

[10 marks] 



QUESTION 7 

7. 	 (a) Use the Mean Value Theorem to show that; 

. 1 1 
1. 	 [5 marks]"7 < J38 6 < 6· 

ii. 	~ < In 2 < l. [5 marks] 

(b) i. State the supremum property of JR. 	 [2 marks] 

ii. Let 	u be an upper bound for a non-empty subset V of JR. State a 
necessary and sufficient condition for u to equal sup V. [2 marks] 

iii. Let S 	and T be non-empty subsets of JR. Define 

S +T:= {x + y E JR: XES, YET}. 

Use your result of 7(b)ii above (or otherwise) to show that if both S 

and T are bounded below then sup(S +T) = sup S + sup T.[6 marks] 



