UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2012/2013

BSc. /BEd. /B.A.S.S III

TITLE OF PAPER : REAL ANALYSIS

COURSE NUMBER : M 331

TIME ALLOWED : THREE (3) HOURS

INSTRUCTIONS : 1. THIS PAPER CONSISTS OF
SEVEN QUESTIONS.
2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) Let $a, b>0$. Prove that $a<b \Longleftrightarrow a^{n}<b^{n}, \forall n \in \mathbb{N}$.
(b) i. Find all $x \in \mathbb{R}$ that satisfy the inequality $|x-2| \leq x+1$. [4 marks]
ii. Explain precisely the statement:
"A non-empty set S of real numbers is bounded". [2 marks]
iii. Let $S=\{x \in \mathbb{R}:|x-2| \leq x+1\}$. Is S bounded?

Justify your answer.
(c) i. Let S be a non-empty subset of \mathbb{R}. Explain precisely each of the following statements.
A. A real number u is an lower bound of S.
B. A real number v is an infimum of S.
ii. If $S \subseteq \mathbb{R}$ contains one of its lower bounds, show that this lower bound is the infimum of S.

QUESTION 2

2. (a) Let $\left(x_{n}\right)$ be a sequence of real numbers. Explain precisely each of the following statements.
i. $\left(x_{n}\right)$ is convergent.
ii. $\left(x_{n}\right)$ is Cauchy.
iii. $\left(x_{n}\right)$ is bounded.
(b) i. Let $\left(x_{n}\right),\left(y_{n}\right)$ be sequences of real numbers. Prove that if $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are both Cauchy, then $\left(x_{n}+y_{n}\right)$ is also Cauchy.
ii. Let $c \in \mathbb{R}$. Show that the constant sequence (c) is Cauchy. [4 marks]
iii. Show directly from the definition that

$$
\left(\frac{n+1}{n}\right)
$$

is a Cauchy sequence.
(c) Consider the statement:
"Every bounded sequence of real numbers is convergent" Is this statement true or false? Justify your answer.

QUESTION 3

3. (a) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be functions, and let $c \in(a, b)$.
i. Explain precisely the statement " f is continuous at c ". [2 marks]
ii. Show that if both f and g are continuous at c, then the sum function $f+g$ is continuous at c.
iii. Is the converse of (3(a)ii) true of false? Justify your answer.[2 marks]
iv. Show that if both f and g are continuous at c, then the product function $f g$ is continuous at c.
[4 marks]
v. Is the converse of (3(a)iv) true of false? Justify your answer.[2 marks]
(b) State the Intermediate value theorem and use it to show that the equation $x^{3}+4 x^{2}-5=0$ has a solution in the interval $[1,2]$.

QUESTION 4

4. (a) Let $f:(a, b) \rightarrow \mathbb{R}$ be a function.
i. Explain the statement " f is differentiable at $c \in(a, b)$ ". [2 marks]
ii. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x):=\left\{\begin{array}{cc}
e^{x}, & x \leq 0 \\
x+1, & x>0
\end{array}\right.
$$

A. Show that f is differentiable at $x=0$.
B. Is f continuous at $x=0$? Justify your answer.
(b) i. State the Mean value theorem for derivatives.
ii. Use the Mean value theorem for derivatives to prove each of the following statements.
A. $|\sin x-\sin y| \leq|x-y|, \forall x, y \in \mathbb{R}$.
[5 marks]
B. Let I be an interval. Let $f: I \rightarrow \mathbb{R}$ be differentiable on I. Show that if $f^{\prime}>0$ on I, then f is strictly increasing on I. [5 marks]

QUESTION 5

5. (a) Let $\sum a_{n}$ be a series in \mathbb{R}. Precisely explain the following statements.
i. $\sum a_{n}$ converges.
[2 marks]
ii. $\sum a_{n}$ is absolutely convergent.
(b) i. Prove that if $\sum x_{n}$ converges, then $\sum x_{n}$ is absolutely convergent.
ii. Is the converse of 5 (b)i true? Justify your answer.
(c) If series $\sum x_{n}$ converges, then $\lim \left(x_{n}\right)=0$.
(d) State the Cauchy convergence criterion for series.
(e) Let $\left(a_{n}\right)$ be a bounded sequence of real numbers. Show that if $\sum a_{n}$ is absolutely convergent, then the series $\sum a_{n}^{2}$ converges.

QUESTION 6

6. (a) Let $f:[a, b] \rightarrow \mathbb{R}$. Use upper and lower sums to define the Riemann integral $\int_{a}^{b} f(x) d x$.
[10 marks]
(b) From the definition of the Riemann integral show that

$$
\int_{0}^{1} x^{3} d x=\frac{1}{4}
$$

Assume without proof that

$$
1^{3}+2^{3}+\cdots+n^{3}=\left[\frac{m(m+1)}{2}\right]^{2}, \forall n \in \mathbb{N}
$$

[10 marks]

QUESTION 7

7. (a) Use the Mean Value Theorem to show that;
i. $\frac{1}{7}<\sqrt{38}-6<\frac{1}{6}$.
[5 marks]
ii. $\frac{1}{2}<\ln 2<1$.
[5 marks]
(b) i. State the supremum property of \mathbb{R}.
[2 marks]
ii. Let u be an upper bound for a non-empty subset V of \mathbb{R}. State a necessary and sufficient condition for u to equal $\sup V$. [2 marks]
iii. Let S and T be non-empty subsets of \mathbb{R}. Define $S+T:=\{x+y \in \mathbb{R}: x \in S, y \in T\}$.
Use your result of 7 (b)ii above (or otherwise) to show that if both S and T are bounded below then $\sup (S+T)=\sup S+\sup T .[6$ marks]
