UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2012/13

B.Sc./ B.Ed. / B.A.S.S III

TITLE OF PAPER	:	DYNAMICS II			
COURSE NUMBER	:	M355			
TIME ALLOWED	•	THREE (3) HOURS			
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWER ANY <u>FIVE</u> QUESTIONS 			
SPECIAL REQUIREMENTS	:	NONE			

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) Give the definitions and some example)les -	ot
---	--------	----

(i) degrees of freedom,

(ii) non-holonomic systems,

(iii) reonomic systems. [2,2,2]

(b) Prove that the frictional force is non-conservative.

(c) Prove the cancellation of dot property lemma,

$$\frac{\partial \overline{r}_{\gamma}}{\partial \dot{q}_{i}} = \frac{\partial \overline{\tau}_{\gamma}}{\partial q_{i}}.$$

(d) Consider a mathematical pendulum.

- (i) Derive Lagrange equation, and
- (ii) Solve it for small angle.

QUESTION 2

a) Masses m_1 and m_2 are located on smooth inclined planes of fixed angles α_1 and α_2 respectively and are connected by an inextensible string of negligible mass over a smooth peg. Set up the Lagrangian and find the acceleration of mass m_1 . [5]

(b) The kinetic energy in spherical coordinates $r, \ \theta, \ \rho$ is given by

 $2T = m(\dot{r}^2 + r^2\dot{ heta}^2 + r^2\dot{
ho}^2\sin^2 heta)$ and the virtual work is given by

 $\delta W = m(F\delta r + Gr\delta\theta + Hr\sin\theta\delta\rho).$

(i) Find the generalized forces,

- (ii) Construct Lagrange equations.
- (c) Prove that for holonomic, scleronomic system

$$\sum_{i=1}^{n} \dot{q}_i \frac{\partial T}{\partial \dot{q}_i} = 2T,$$

in the usual notations.

[7]

[3,5]

[3]

[7]

[2,2]

(a) Derive Hamilton's equations if $H = H(q, p, t)$.	[5]
(b) For the particle of mass m in the field of gravity find	
(i) generalized momentum,	
(ii) Hamiltonian,	
(iii) Hamilton's equations.	[2,2,2]
(c) Let θ and ρ be generalized coordinates. Given kinetic energy	
$2T = ml^2(\dot{\theta}^2 + \dot{\rho}^2 \sin^2 \theta)$ and potential energy $\Pi = -mgl\cos\theta$. Find	
(i) Generalized momenta,	
(ii) Hamiltonian,	
(iii) Hamilton's equations.	[3,3,3]

QUESTION 4

a) Show that if H = H(q, p) and a system is conservative then

$$H = T + \Pi$$

[4]

- b) Consider a tranformation for the mathematical pendelum $x = l \sin \rho$.
- (i) Show that p_x = p_ρ/l cos ρ
 (ii) Prove that the transformation (ρ, p_ρ) → (x, p_x) is canonical. [5,3]
- (c) Let H be a Hamiltonian and D a dynamic variable of a system.
- (i) Show that

$$\frac{dD}{dt} = \frac{\partial D}{\partial t} + [D, H].$$

(ii) Given $H = \frac{p^2}{2} - \frac{1}{2q^2}$. Show that $D = \frac{pq}{2} - Ht$ is a constant of motion. [3,5]

a) Prove that

۰,

$$[q_k, q_l]_{q,p} = [p_k, p_l]_{q,p} = 0$$

in the usual notations.

b) Consider transformation

$$Q = q^{\alpha} e^{\beta p}, \quad P = q^{\alpha} e^{-\beta p},$$

where α and β are constants.	Use Poisson Bracke	ts to find	$\alpha \text{ and } \beta$	such	that transformatio	n is
canonical.						[6]
c) Derive Hamilton's equations in Poisson formulation.				[8]		

QUESTION 6

a) State and prove that the Main Lemma of calculus or variations. [6]

b) Find the extremals for the functional

•

$$V[y(x)] = \int_{x}^{x_{1}} (y^{2} + y'^{2} - 2y\sin x) dx.$$
[6]

c) Let $F = y\sqrt{1-y'^2}$. Construct

(i) Euler equation,

(ii) Beltrami identity.

 $[4,\!4]$

[6]

a) Find extremals for the following functionals

(i)
$$V[y(x), z(x)] = \int_0^1 (y'^2 + z'^2 + y'z')dx;$$

 $y(0) = z(0) = 0, \quad y(1) = 1, \quad z(1), \text{ is free}$
(ii) $V[y(x)] = \int_0^1 (y''^2 + 1)dx;$
 $y(0) = 0, \quad y'(0) = y(1) = y'(1) = 1.$
[6,8]

b) Find Ostrogradski's equation for the following functional

$$V[z(x,y)] = \int_{D} \int_{D} \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 \right] dx dy,$$

,

where z(x, y) is known on the boundary of region D.

•

[6]