UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2012/13
B.Sc./ B.Ed. / B.A.S.S III

TITLE OF PAPER		DYNAMICS II
COURSE NUMBER	:	M355
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF SEVEN QUESTIONS.
		2. ANSWER ANY FIVE QUESTIONS
SPECIAL REQUIREMENTS		NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Give the definitions and some examples of
(i) degrees of freedom,
(ii) non-holonomic systems,
(iii) reonomic systems.
(b) Prove that the frictional force is non-conservative.
(c) Prove the cancellation of dot property lemma,

$$
\begin{equation*}
\frac{\partial \bar{r}_{\gamma}}{\partial \dot{q}_{i}}=\frac{\partial \bar{r}_{\gamma}}{\partial q_{i}} . \tag{7}
\end{equation*}
$$

(d) Consider a mathematical pendulum.
(i) Derive Lagrange equation, and
(ii) Solve it for small angle.

QUESTION 2
a) Masses m_{1} and m_{2} are located on smooth inclined planes of fixed angles α_{1} and α_{2} respectivley and are connected by an inextensible string of negligible mass over a smooth peg. Set up the Lagrangian and find the acceleration of mass m_{1}.
(b) The kinetic energy in spherical coordinates r, θ, ρ is given by
$2 T=m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \dot{\rho}^{2} \sin ^{2} \theta\right)$ and the virtual work is given by
$\delta W=m(F \delta r+G r \delta \theta+H r \sin \theta \delta \rho)$.
(i) Find the generalized forces,
(ii) Construct Lagrange equations.
(c) Prove that for holonomic, scleronomic system

$$
\sum_{i=1}^{n} \dot{q}_{i} \frac{\partial T}{\partial \dot{q}_{i}}=2 T
$$

in the usual notations.

QUESTION 3

(a) Derive Hamilton's equations if $H=H(q, p, t)$.
(b) For the particle of mass m in the field of gravity find
(i) generalized momentum,
(ii) Hamiltonian,
(iii) Hamilton's equations.
(c) Let θ and ρ be generalized coordinates. Given kinetic energy
$2 T=m l^{2}\left(\dot{\theta}^{2}+\dot{\rho}^{2} \sin ^{2} \theta\right)$ and potential energy $\Pi=-m g l \cos \theta$. Find
(i) Generalized momenta,
(ii) Hamiltonian,
(iii) Hamilton's equations.

QUESTION 4

a) Show that if $H=H(q, p)$ and a system is conservative then

$$
H=T+\Pi
$$

b) Consider a tranformation for the mathematical pendelum $x=l \sin \rho$.
(i) Show that $p_{x}=\frac{p_{\rho}}{l \cos \rho}$
(ii) Prove that the transformation $\left(\rho, p_{\rho}\right) \rightarrow\left(x, p_{x}\right)$ is canonical.
(c) Let H be a Hamiltonian and D a dynamic variable of a system.
(i) Show that

$$
\frac{d D}{d t}=\frac{\partial D}{\partial t}+[D, H] .
$$

(ii) Given $H=\frac{p^{2}}{2}-\frac{1}{2 q^{2}}$. Show that $D=\frac{p q}{2}-H t$ is a constant of motion.

QUESTION 5

a) Prove that

$$
\left[q_{k}, q_{l}\right]_{q, p}=\left[p_{k}, p_{l}\right]_{q, p}=0
$$

in the usual notations.
b) Cousider transformation

$$
Q=q^{\alpha} e^{\beta p}, \quad P=q^{\alpha} e^{-\beta p}
$$

where α and β are constants. Use Poisson Brackets to find α and β such that transformation is canonical.
c) Derive Hamilton's equations in Poisson formulation.

QUESTION 6

a) State and prove that the Main Lemma of calculus or variations.
b) Find the extremals for the functional

$$
V[y(x)]=\int_{x}^{x_{1}}\left(y^{2}+y^{\prime 2}-2 y \sin x\right) d x
$$

c) Let $F=y \sqrt{1-y^{\prime 2}}$. Construct
(i) Euler equation,
(ii) Beltrami identity.

QUESTION 7

a) Find extremals for the following functionals
(i) $V[y(x), z(x)]=\int_{0}^{1}\left(y^{\prime 2}+z^{\prime 2}+y^{\prime} z^{\prime}\right) d x$;
$y(0)=z(0)=0, \quad y(1)=1, \quad z(1)$, is free
(ii) $V[y(x)]=\int_{0}^{1}\left(y^{\prime \prime 2}+1\right) d x$;
$y(0)=0, \quad y^{\prime}(0)=y(1)=y^{\prime}(1)=1$.
b) Find Ostrogradski's equation for the following functional

$$
V[z(x, y)]=\iint_{D}\left[\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}\right] d x d y
$$

where $z(x, y)$ is known on the boundary of region D.

