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QUESTION 1 

(a) Give the definitions and some examples of 

(i) degrees of freedom, 

(ii) non-holonomic systems, 

(iii) reonomic systems. [2,2,2] 

(b) Prove that the frictional force is non-conservative. [3] 

(c) Prove the cancellation of dot property lemma, 

of,,! 
aq, 

Or,,! 
aqi . 

[7] 

(d) Consider a mathematical pendulum. 

(i) Derive Lagrange equation, and 

(ii) Solve it for small angle. [2,2] 

QUESTION 2 

a) Masses ml and m2 are located on smooth inclined planes of fixed angles al and a2 respectivley 

and are connected by an inextensible string of negligible mass over a smooth peg. Set up the 

Lagrangian and find the acceleration of mass mI' [5] 

(b) The kinetic energy in spherical coordinates r, e, p is given by 

2T = m(r2 + r2iJ2 + r2p2 sin2 e) and the virtual work is given by 

oW = m(For + GraB + Hr sin Bop). 

(i) Find the generalized forces, 

(ii) Construct Lagrange equations. [3,5] 

(c) Prove that for holonomic, scleronomic system 

n
"\:' . aT
L. qi fr, ::; 2T, 

. i=1 qt 

in the usual notations. [7] 



QUESTION 3 

(a) Derive Hamilton's equations if H = H(q, p, t). 

(b) For the particle of mass m in the field of gravity find 

(i) generalized momentum, 

(ii) Hamiltonian, 

(iii) Hamilton's equations. 

(c) Let e and p be generalized coordinates. Given kinetic energy 

2T ml2 (iJ2 + />2 sin2 ()) and potential energy II = -mgl cos (). Find 

(i) Generalized mome:qta, 

(ii) Hamiltonian, 

(iii) Hamilton's equations. 

[5] 

[2,2,2J 

[3,3,3] 

QUESTION 4 

a) Show that if H = H(q, p) and a system is conservative then 

H=T+II 

b) Consider a tranformation for the mathematical pendelmll x I sin p. 

(i) Show that Px = . cosp 

(ii) Prove that the transformation (p, Pr) (.'E,Px) is canonical. 

(c) Let H be a Hamiltonian and D a dynamic variable of a system. 

(i) Show that 

[4j 

[5,3] 

dD _ aD + [D,H].- at 
p2 1 

(ii) Given H Show that D = pq Ht is a constant of motion. [3,5]
2 . 2 



QUESTION 5 

a) Prove that 

[qk,qdq,p = [Pk,pdq,p = 0 

in the usual notations. [6] 

b) Consider transformation 

Q qQePP, P qQe-PP , 

where a; and (3 are constants. Use Poisson Brackets to find a; and (3 such that transformation is 

canonical. [6] 

c) Derive Hamilton's equations in Poisson formulation. [8] 

QUESTION 6 

a) State and prove that the Main Lemma of calculus or variations. [6] 

b) Find the extremals for the functional 

Jt'lV[y(x)] (y2 + yl2 2y sin x)dx. 
x 

[6] 

c) Let F YVI - y12. Construct 

(i) Euler eqnation, 

(ii) Beltrami identity. [4,4] 



QUESTION 7 

a) Find extremals for the following functionals 

(i) V[y(x),z(x)] 11 

(y'2 + z'2+ yI Z')dx; 

y(O) z(O) = 0, y(l) 1, z(l), is free 

(ii) V[y(x)] = 11 (y1f2 + l)dx; 

y(O) 0, y'(O) y(l) = y'(l) = 1. 

b) Find Ostrogradski's equation for the following functional 

[6,8J 

V[z(x,y)] Jj [(:)' + (~)'l dxdy, 

where z(x, y) is known on the boundary of region D. [6J 


