University of Swaziland

Final Examination, December 2012

BSc IV, Bass IV, BEd IV, BEng III

Title of Paper : Partial Differential Equations
Course Number : M415
Time Allowed : Three (3) Hours

Instructions :

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions. Submit solutions to ONLY FIVE questions.
4. Show all your working.
5. A Table of Laplace Transforms is provided at the end of the question paper.

Question 1

(a) By eliminating the arbitrary function, find the partial differential equation satisfied by the following functions
(i) $u(x, y)=f\left(\frac{x y}{u}\right)$
(ii) $u=f(a x+b y)+g(c x+d y)$
where a, b, c and d are nonzero constants
[6]
(b) Find the general solution of the partial differential

$$
(a u-b y) u_{x}+(b x-c u) u_{y}=c y-a x
$$

where a, b, c and d are nonzero constants.

Question 2

(a) Find the particular solution of the partial differential equation

$$
x\left(y^{2}+u\right) u_{x}-y\left(x^{2}+u\right) u_{y}=\left(x^{2}-y^{2}\right) u
$$

that passes through the curve

$$
\Gamma: \quad u=0 \text { on } x+y=0
$$

(b) Given the function $u=u(x, y)$ and transformation $x=r \cos \theta, y=r \sin \theta$ write

$$
\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}
$$

in terms of r and θ

Question 3

Reduce the following equation

$$
x^{2} u_{x x}-2 x y u_{x y}+y^{2} u_{y y}+x u_{x}+y u_{y}=0, \quad x \neq 0, \quad y \neq 0
$$

to canonical form and then find the general solution

Question 4

Consider the function

$$
f(x)=\left\{\begin{array}{ll}
\pi+x, & -\pi \leq x \leq 0 ; \\
\pi-x, & 0 \leq x \leq \pi
\end{array}, \quad f(x+2 \pi)=f(x)\right.
$$

(a) Find the fourier series expansion for $f(x)$.
(b) Use Parseval's identity to find the value of the sum

$$
1+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\ldots
$$

Question 5

Use Green's theorem

$$
\iint_{\Omega}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\oint_{\Gamma} M d x+N d y
$$

to show that the solution for the following partial differential equation

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=0, \quad-\infty<x<+\infty, t>0 \\
& u(x, 0)=f(x) \\
& u_{t}(x, 0)=g(x)
\end{aligned}
$$

is given by

$$
u(x, t)=\frac{f(x-c t)+f(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s .
$$

(Ω is the characteristic triangle and Γ is the boundary of the characteristic triangle).

Question 6

Solve the following boundary value problem

$$
\begin{aligned}
& u_{x x}+u_{y y}=0, \quad 0<x<L, \quad 0<y<H \\
& u(x, 0)=0, \quad 0 \leq x \leq L \\
& u(x, H)=0, \quad 0 \leq x \leq L \\
& u(L, y)=0, \quad 0 \leq y \leq H \\
& u(0, y)=f(y), \quad 0 \leq y \leq H
\end{aligned}
$$

where $f(y)$ is a defined function.

Question 7

Solve the following partial differential equation using the method of Laplace transforms

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x}+\sin (\pi x), \quad 0<x<1, \quad t>0 \\
& u(x, 0)=0, \quad 0 \leq x \leq 1 \\
& u_{t}(x, 0)=0, \quad 0 \leq x \leq 1 \\
& u(0, t)=0, \quad t \geq 0 \\
& u(1, t)=0, \quad t \geq 0
\end{aligned}
$$

Table of Laplace Transforms

$f(t)$	$F(s)$
t^{n}	$\frac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$
$e^{a t}$	$\frac{1}{s-a}$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$
$\frac{1}{a-b}\left(e^{a t}-e^{b t}\right)$	$\frac{1}{(s-a)(s-b)}$
$\frac{1}{a-b}\left(a e^{a t}-b e^{b t}\right)$	$\frac{s}{(s-a)(s-b)}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
$\sin (a t)-a t \cos (a t)$	$\frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}}$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$
$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$
$\sin (a t) \sinh (a t)$	$\frac{2 a^{2}}{s^{4}+4 a^{4}}$
$\frac{d^{n} f}{d t^{n}}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$

