University of Swaziland

Supplementary Examination, July 2013

BSc IV, Bass IV, BEd IV, BEng III

Title of Paper	: Partial Differential Equations
<u>Course Number</u>	: M415

<u>**Time Allowed</u></u> : Three (3) Hours</u>**

;

<u>Instructions</u>

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions. Submit solutions to ONLY FIVE questions.
- 4. Show all your working.
- 5. A Table of Laplace Transforms is provided at the end of the question paper.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a) By eliminating the arbitrary function, find the partial differential equation satisfied by the following function

$$x + y + u = f(x^{2} + y^{2} + u^{2}).$$
[10]

(b) Find the general solution of the partial differential equation

$$x(x^{2} + 3y^{2})u_{x} - y(3x^{2} + y^{2})u_{y} = 2u(y^{2} - x^{2}).$$
[10]

Question 2

Consider the following partial differential equation

$$2u_{xx} - 4uxy + 2u_{yy} + 3u = 0.$$

(a) Classify the partial differential equation as hyperbolic, parabolic or elliptic.
 [3]

(b) Reduce the equation into its canonical form and hence find the general solution. [17]

Question 3

Find the particular solutions for the following partial differential equations

(a) $yu_y - x^2u_y$, $u = x^2$ on $3y^2 = 2x^3$. [10]

(b)
$$u_{xy} = 1$$
, $u = 0$ and $u_x = 0$ on $x + y = 0$. [10]

Question 4

Consider the function

/

$$f(x) = \begin{cases} -1, & -\pi \le x < 0; \\ 0, & x = 0; \\ +1, & 0 < x \le \pi. \end{cases} \qquad f(x + 2\pi) = f(x).$$

(a) Find the fourier series expansion.

[12]

(b) Use Parseval's identity to find the value of the sum

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

[8]

Question 5

Solve the following partial differential equations using the method of Laplace transforms

(a)
$$u_{xt} + \sin t = 0$$
, $u(x, 0) = x$, $u(0, t) = 0$. [10]

(b)
$$xu_x + u_t = xt$$
, $u(x, 0) = 0$, $u(0, t) = 0$. [10]

Question 6

í

.

Show that the initial value problem with non-homogeneous boundary conditions

$$u_t - u_{xx} = 0, \quad 0 < x < L, \quad t > 0$$

$$u(0,t) = T_1, \quad t \ge 0$$

$$u(L,t) = T_2, \quad t \ge 0$$

$$u(x,0) = f(x), \quad 0 \le x \le 1$$

can be transformed to an initial value problem with homogeneous boundary conditions. Hence find the general solution of initial value problem using separation of variables. [20]

Question 7

Solve the following non homogeneous partial differential equation

$$u_{tt} - c^2 u_{xx} = e^x, \quad -\infty < x < +\infty, \quad t > 0$$

 $u(x,0) = 2$
 $u_t(x,0) = x^2.$

[20]

f(t)	F(s)
t^n	$\frac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
$\frac{1}{a-b} \Big(e^{at} - e^{bt} \Big)$	$\frac{1}{(s-a)(s-b)}$
$\frac{1}{a-b} \Big(a e^{at} - b e^{bt} \Big)$	$\frac{s}{(s-a)(s-b)}$
$\sin(at)$	$rac{a}{s^2+a^2}$
$\cos(at)$	$rac{s}{s^2+a^2}$
$\sin(at) - at\cos(at)$	$\frac{2a^3}{(s^2+a^2)^2}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$
$\sinh(at)$	$rac{a}{s^2-a^2}$
$\cosh(at)$	$\frac{s}{s^2-a^2}$
$\sin(at)\sinh(at)$	$\frac{2a^2}{s^4+4a^4}$
$rac{d^n f}{dt^n}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \cdots - f^{(n-1)}(0)$

Table of Laplace Transforms