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QUESTION 1 

Define EEl and 0 on Z as follows. For m, nEZ, 

mEEln=m+n-l 

and 
m0b=m+n-mn 

where the operations on the right hand side are the usual addition and multiplication. 

1.1 	Show that (Z, EEl, 0) is a commutative ring. [12] 

1.2 Show that (Z, 0) has identity by determining this identity. 	 [3] 

1.3 	Consider the map ¢ : (Z, 0) -+ Z defined by ¢(n) = 1 - n. Show that ¢ is a ring 
homomorphism. [5] 

QUESTION 2 

2.1 	Let F be a. field. Explain what is meant by saying, "The polynomial f(x) is irreducible in 
F[x]." [2] 

2.2 	State Eisenstein's irreducibility criterion. [2] 

2.3 Determine the irreducibility or otherwise of 

2.3.1 x3 
- 7x2 + 3x + 3 in Q[x]. 	 [6] 

2.3.2 2X lO - 25x3 + lOx2 30 in Q[x]. 	 [4] 

2.4 Suppose 

f (x) = x5 + 5x4 + 3x + 2 and g(x) = 2X2 + 1 


are polynomials in Z7[X]. Find q(x) and rex) in Z7[X] as described by the division algorithm 
so that f(x) = q(x)g(x) + rex) with rex) = 0 or degr(x) < degg(x). [6] 

QUESTION 3 

3.1 	Let a be an element of an extension field E of F. Explain what it means for a to be 

3.1.1 algebraic over F? 	 [2J 
3.1.2 transcendental over F? 	 [1] 

3.2 	State (do not prove) Kronecker's Theorem. [4] 

3.3 Consider the polynomial x3 + x2+ 1 in Z2[X]. 

3.3.1 Show that x3 + x 2 + 1 is irreducible over Z2. 	 [3J 

3.3.2 Let a be a zero of x3 + x2 +1 in an extension field of Z2. Show that x3 + x2 + 1 factors 
into three linear factors in Z2(a)[x] by finding this factorisation. [lOJ 
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QUESTION 4 

4.1 	 Let Rand S be rings. Define 


4.1.1 an ideal in R, 	 [2] 

4.1.2 a ring homomorphism ¢ : R -+ S, 	 [2] 

4.1.3 the kernel of a ring homomorphism ¢ : R -+ S. 	 [2] 


4.2 	Let ¢ : R -+ S be a ring homomorphism. 


4.2.1 Let OR and Os be the zeroes in Rand S respectively. Prove that ¢(OR) = Os. [4] 


4.2.2 Show that for r E R, ¢(-r) = -¢(r). 	 [4] 


4.2.3 Show that ker c/> is an ideal in R. 	 [6] 


QUESTION 5 

5.1 	 Let a be a zero of x2 + x + 1 in an extension field of Z2. 


5.1.1 Write down all the elements of Z2(a). 	 [4] 


5.1.2 Const.ruct the multiplication table for Z2(a). [Show how each product was found.] [8] 


5.2 	For each algebraic number a E C, find irr(a,Q) and deg(a,Q). 


5.2.1 J2 + i 	 [4] 

5.2.2 J2+J3 	 [4] 


QUESTION 6 

6.1 	 Define (i) an integral domain and (ii) a field. Give an example of an integral domain that 

is not a field. [6] 


6.2 Prove that a finite integral domain is a field. 	 [8] 


6.3 Prove that every field is an integral domain. 	 [6] 


QUESTION 7 

7.1 	 Let R be the ring of matrices of the form (_~ ~), a, b E R Show that the map 


¢ : R -+ C defined by 


¢ (_~ ~) = a + ib 

is a ring homomorphism. Find its kernel. [You do not need to show that R is a ring.] [4] 

7.2 	 Let F be a field. 


7.2.1 Show that the only ideals in Fare {O} and F itself. 	 [6] 

7.2.2 Let ¢ : F -+ S be a ring homomorphism. Show that ¢ is either the zero map or ¢ is 


one-to-one. [10] 


________________________END OF EXAMINATION PAPER________________________ 


