University of Swaziland

Final Examination, 2012/2013

BSc IV, Bass IV, BEd IV

Title of Paper	: Abstract Algebra II
Course Number	$:$ M423
Time Allowed	$:$ Three (3) hours
Instructions	$:$

1. This paper consists of SEVEN questions.
2. Each question is worth 20%.
3. Answer ANY FIVE questions.
4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

QUESTION 1

Define \oplus and \odot on \mathbb{Z} as follows. For $m, n \in \mathbb{Z}$,

$$
m \oplus n=m+n-1
$$

and

$$
m \odot b=m+n-m n
$$

where the operations on the right hand side are the usual addition and multiplication.
1.1 Show that $\langle\mathbb{Z}, \oplus, \odot\rangle$ is a commutative ring.
1.2 Show that $\langle\mathbb{Z}, \oplus, \odot\rangle$ has identity by determining this identity.
1.3 Consider the map $\phi:\langle\mathbb{Z}, \oplus, \odot\rangle \rightarrow \mathbb{Z}$ defined by $\phi(n)=1-n$. Show that ϕ is a ring homomorphism.

QUESTION 2

2.1 Let F be a field. Explain what is meant by saying, "The polynomial $f(x)$ is irreducible in $F[x]$."
2.2 State Eisenstein's irreducibility criterion.
2.3 Determine the irreducibility or otherwise of
2.3.1 $x^{3}-7 x^{2}+3 x+3$ in $\mathbb{Q}[x]$.
2.3.2 $2 x^{10}-25 x^{3}+10 x^{2}-30$ in $\mathbb{Q}[x]$.
2.4 Suppose

$$
\begin{equation*}
f(x)=x^{5}+5 x^{4}+3 x+2 \quad \text { and } \quad g(x)=2 x^{2}+1 \tag{6}
\end{equation*}
$$

are polynomials in $\mathbb{Z}_{7}[x]$. Find $q(x)$ and $r(x)$ in $\mathbb{Z}_{7}[x]$ as described by the division algorithm so that $f(x)=q(x) g(x)+r(x)$ with $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.

QUESTION 3

3.1 Let α be an element of an extension field E of F. Explain what it means for α to be
3.1.1 algebraic over F ?
3.1.2 transcendental over F ?
3.2 State (do not prove) Kronecker's Theorem.
3.3 Consider the polynomial $x^{3}+x^{2}+1$ in $\mathbb{Z}_{2}[x]$.
3.3.1 Show that $x^{3}+x^{2}+1$ is irreducible over \mathbb{Z}_{2}.
3.3.2 Let α be a zero of $x^{3}+x^{2}+1$ in an extension field of \mathbb{Z}_{2}. Show that $x^{3}+x^{2}+1$ factors into three linear factors in $\mathbb{Z}_{2}(\alpha)[x]$ by finding this factorisation.

QUESTION 4

4.1 Let R and S be rings. Define
4.1.1 an ideal in R,
4.1.2 a ring homomorphism $\phi: R \rightarrow S$,
4.1.3 the kernel of a ring homomorphism $\phi: R \rightarrow S$.
4.2 Let $\phi: R \rightarrow S$ be a ring homomorphism.
4.2.1 Let 0_{R} and 0_{S} be the zeroes in R and S respectively. Prove that $\phi\left(0_{R}\right)=0_{S}$.
4.2.2 Show that for $r \in R, \phi(-r)=-\phi(r)$.
4.2.3 Show that $\operatorname{ker} \phi$ is an ideal in R.

QUESTION 5

5.1 Let α be a zero of $x^{2}+x+1$ in an extension field of \mathbb{Z}_{2}.
5.1.1 Write down all the elements of $\mathbb{Z}_{2}(\alpha)$.
5.1.2 Construct the multiplication table for $\mathbb{Z}_{2}(\alpha)$. [Show how each product was found.]
5.2 For each algebraic number $\alpha \in \mathbb{C}$, find $\operatorname{irr}(\alpha, \mathbb{Q})$ and $\operatorname{deg}(\alpha, \mathbb{Q})$.
5.2.1 $\sqrt{2}+i$
$5.2 .2 \sqrt{2+\sqrt{3}}$

QUESTION 6

6.1 Define (i) an integral domain and (ii) a field. Give an example of an integral domain that is not a field.
6.2 Prove that a finite integral domain is a field.
6.3 Prove that every field is an integral domain.

QUESTION 7

7.1 Let R be the ring of matrices of the form $\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right), a, b \in \mathbb{R}$. Show that the map $\phi: R \rightarrow \mathbb{C}$ defined by

$$
\phi\left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right)=a+i b
$$

is a ring homomorphism. Find its kernel. [You do not need to show that R is a ring.]
7.2 Let F be a field.
7.2.1 Show that the only ideals in F are $\{0\}$ and F itself.
7.2.2 Let $\phi: F \rightarrow S$ be a ring homomorphism. Show that ϕ is either the zero map or ϕ is one-to-one.

