University of Swaziland

Final Examination, 2012/2013

BSc IV, Bass IV, BEd IV

Title of Paper	: Abstract Algebra II
Course Number	: M423
Time Allowed	: Three (3) hours
Instructions	:

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

QUESTION 1

Define \oplus and \odot on \mathbb{Z} as follows. For $m, n \in \mathbb{Z}$,

$$m \oplus n = m + n - 1$$

and

$$m \odot b = m + n - mn$$

where the operations on the right hand side are the usual addition and multiplication.

- 1.1 Show that $\langle \mathbb{Z}, \oplus, \odot \rangle$ is a commutative ring. [12]
- 1.2 Show that $\langle \mathbb{Z}, \oplus, \odot \rangle$ has identity by determining this identity. [3]
- 1.3 Consider the map $\phi : \langle \mathbb{Z}, \oplus, \odot \rangle \to \mathbb{Z}$ defined by $\phi(n) = 1 n$. Show that ϕ is a ring homomorphism. [5]

QUESTION 2

2.1	Let F be a field. Explain what is meant by saying, "The polynomial $f(x)$ is irreducible in $F[x]$."	[2]
2.2	State Eisenstein's irreducibility criterion.	[2]
2.3	Determine the irreducibility or otherwise of	
	2.3.1 $x^3 - 7x^2 + 3x + 3$ in $\mathbb{Q}[x]$.	[6]
	2.3.2 $2x^{10} - 25x^3 + 10x^2 - 30$ in $\mathbb{Q}[x]$.	[4]

2.4 Suppose

$$f(x) = x^5 + 5x^4 + 3x + 2$$
 and $g(x) = 2x^2 + 1$

are polynomials in $\mathbb{Z}_7[x]$. Find q(x) and r(x) in $\mathbb{Z}_7[x]$ as described by the division algorithm so that f(x) = q(x)g(x) + r(x) with r(x) = 0 or deg $r(x) < \deg g(x)$. [6]

QUESTION 3

3.1 Let α be an element of an extension field E of F. Explain what it means for α to be

3.1.1 algebraic over F?	[2]
3.1.2 transcendental over F?	[1]
3.2 State (do not prove) Kronecker's Theorem.	[4]

- 3.3 Consider the polynomial $x^3 + x^2 + 1$ in $\mathbb{Z}_2[x]$.
 - 3.3.1 Show that $x^3 + x^2 + 1$ is irreducible over \mathbb{Z}_2 . [3]
 - 3.3.2 Let α be a zero of $x^3 + x^2 + 1$ in an extension field of \mathbb{Z}_2 . Show that $x^3 + x^2 + 1$ factors into three linear factors in $\mathbb{Z}_2(\alpha)[x]$ by finding this factorisation. [10]

QUESTION 4

4.1 Let R and S be rings. Define

4.1.1 an <i>ideal</i> in R ,	[2]
4.1.2 a ring homomorphism $\phi: R \to S$,	[2]
4.1.3 the kernel of a ring homomorphism $\phi: R \to S$.	[2]
4.2 Let $\phi: R \to S$ be a ring homomorphism.	
4.2.1 Let 0_R and 0_S be the zeroes in R and S respectively. Prove that $\phi(0_R) = 0_S$.	[4]
4.2.2 Show that for $r \in R$, $\phi(-r) = -\phi(r)$.	[4]
4.2.3 Show that ker ϕ is an ideal in R .	[6]

QUESTION 5

5.1 Let α be a zero of $x^2 + x + 1$ in an extension field of \mathbb{Z}_2 .

5.1.1 Write down all the elements of $\mathbb{Z}_2(\alpha)$.	[4]
5.1.2 Construct the multiplication table for $\mathbb{Z}_2(\alpha)$. [Show how each product was found.]	[8]
5.2 For each algebraic number $\alpha \in \mathbb{C}$, find $\operatorname{irr}(\alpha, \mathbb{Q})$ and $\operatorname{deg}(\alpha, \mathbb{Q})$.	

5.2.1 $\sqrt{2} + i$	[4]
•	
5.2.2 $\sqrt{2+\sqrt{3}}$	[4]

QUESTION 6

6.1 Define (i) an <i>integral domain</i> and (ii) a <i>field</i> . Give an example of an integral domain that is not a field.	[6]
6.2 Prove that a finite integral domain is a field.	[8]
6.3 Prove that every field is an integral domain.	[6]

QUESTION 7

7.1 Let R be the ring of matrices of the form $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, $a, b \in \mathbb{R}$. Show that the map $\phi: R \to \mathbb{C}$ defined by

$$\phi\left(\begin{array}{cc}a&b\\-b&a\end{array}\right)=a+ib$$

is a ring homomorphism. Find its kernel. [You do not need to show that R is a ring.] [4]

- 7.2 Let F be a field.
 - 7.2.1 Show that the only ideals in F are $\{0\}$ and F itself.
 - 7.2.2 Let $\phi: F \to S$ be a ring homomorphism. Show that ϕ is either the zero map or ϕ is one-to-one. [1

END OF EXAMINATION PAPER.

[10]

[6]