UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2012/2013

B.Sc. / B.Ed. / B.A.S.S.IV

TITLE OF PAPER	:	METRIC SPACES
<u>COURSE NUMBER</u>	•	M431
TIME ALLOWED	•	THREE (3) HOURS
<u>INSTRUCTIONS</u>	:	1. THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS.
		2. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

.

- (a) Let $X = \mathbb{R}^2$, and for $x, y \in \mathbb{R}^2$, let d be the raspberry pickers' function. Show that d is a metric on \mathbb{R}^2 . [13]
- (b) Let $X = \mathcal{C}[-1, 1]$, and let x(t) = t and $y(t) = t^3$ for $t \in [-1, 1]$. Find d(x, y) in $\mathcal{C}[-1, 1]$, where d is the
 - (i) uniform metric, [2]
 - (ii) L_1 -metric, [2]
 - (iii) L_2 -metric. [3]

QUESTION 2

- (a) Let (X, d) be a metric space, and let $A, B, C \subseteq X$. Show that if $A \subseteq B$, then $d(B, C) \leq d(A, C)$. [5]
- (b) Let (X, d) be a metric space. Show that the mapping ρ defined below is a metric in each case:

(i)
$$\rho(x, y) = \min\{d(x, y), 1\};$$
 [6]

(ii)
$$\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$$
. [6]

(c) Show that infinitely many metrics can be defined on a set X with more than one member.

- (a) Prove that a subset G of a metric space X is open if and only if G is the union of all open balls contained in it (G). [10]
- (b) Let X be a metric space, and let A, B be subsets of X. Prove that:
 - i. $A \subseteq B \implies A^{\circ} \subseteq B^{\circ}$. [2]
 - ii. $(A \cap B)^\circ = A^\circ \cap B^\circ$. [6]
 - iii. $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$. [2]

QUESTION 4

- (a) Let X be a metric space, and let F be a subset of X. Prove that F is closed if and only if it's complement, F^c , is open in X. [10]
- (b) Consider \mathbb{R}^2 with the New York metric, and let $(x^{(n)})_{n\geq 1}$, where $x^{(n)} = (x_1^{(n)}, x_2^{(n)})$, be a sequence of points in \mathbb{R}^2 . Prove that $(x^{(n)})_{n\geq 1}$ converges to $x = (x_1, x_2) \in \mathbb{R}^2$ if and only if either

1.
$$x_1^{(n)} = x_1 \forall n \in \mathbb{N} \text{ and } x_2^{(n)} \to x_2, \text{ or}$$

2. $x_1^{(n)} \neq x_1 \text{ for some } n \in \mathbb{N}, \text{ and } x_1^{(n)} \to x_1, x_2^{(n)} \to x_2 = 0.$ [10]

- (a) Let X be a metric space and (x_n)_{n≥1} be a sequence in X. What is meant by saying that (x_n)_{n≥1} is convergent?
- (b) Decide whether or not the following sequences are convergent in the usual (Euclidean) metric on R²:

(i)
$$x_n = \left(\frac{n^3}{3n^3 - 1}, \frac{3}{3n + 2}\sin\left(\frac{n\pi}{2}\right)\right);$$
 [4]

(ii)
$$x_n = \left(10^{-n}, (-1)^n \exp\left(\frac{1}{n}\right)\right).$$
 [3]

- (c) (i) Suppose that (x_n)_{n≥1} converges to x in C[a, b] in the uniform metric. Explain what is meant by *pointwise convergence* of a sequence (x_n)_{n≥1} in C[a, b]. Show that (x_n)_{n≥1} converges to x pointwise. [1,3]
 - (ii) Let x_n in $\mathcal{C}[0,1]$ be defined by

$$x_n(t) = \begin{cases} \frac{nt}{n-1} & \text{if } 0 \le t \le 1 - \frac{1}{n}, \\ n(1-t) & \text{if } 1 - \frac{1}{n} \le t \le 1. \end{cases}$$

Sketch the graph of $x_n(t)$ and show that $(x_n)_{n\geq 1}$ converges pointwise to the function

$$x(t) = \left\{ egin{array}{ll} t & ext{if } 0 \leq t < 1, \ 0 & ext{if } t = 1. \end{array}
ight.$$

Deduce that $(x_n)_{n\geq 1}$ is not convergent in $\mathcal{C}[0,1]$ in the uniform metric. [1,5,1]

- (a) Describe the open balls B(a,3) and the closed balls B[a,3] in \mathbb{R}^2 with respect to the raspberry pickers' metric, where
 - i. a = (0,0), and [2,1]

ii.
$$a = (2, 3)$$
. [2,1]

- (b) Show that for any two points x and y of a metric space, there exists disjoint open balls such that one is centered at at x and the other one is centered at y.
 [5]
- (c) Prove that the limit point of a set S in a metric space X is either an interior point or a boundary point of S.
 [3]
- (d) Prove that an isolated point of a set S in a metric space X is a boundary point of S^c.
- (e) Prove that a boundary point of a subset S of a metric space X is either a limit point of S or an isolated point of S. [3]

(a) Let f be the function f : C[0,1] → R defined for x ∈ C[0,1] by f(x) = x(0).
Show that f is not continuous with respect to the L₁-metric on C[0,1] (and the usual metric on R) by considering the functions given by

$$x_n(t) = \begin{cases} (n-1)t & \text{if } 0 \le t \le \frac{1}{n}, \\ 1-t & \text{if } \frac{1}{n} \le t \le 1. \end{cases}$$

(Hint: Sketch the functions $x_n(t)$ and consider their limit in the L_1 -metric).[6]

(b) Let (X, d) be a metric space with the metric

$$d(x,y) = \left\{ egin{array}{ccc} 0 & ext{if} & x=y, \ 3 & ext{if} & x
eq y. \end{array}
ight.$$

Show that any Cauchy sequence in X is eventually constant, and deduce that (X, d) is complete. [4]

- (c) i. Explain what is meant by a contraction of a metric space. Show that if
 f : [a, b] → [a, b] is differentiable, then f is a contraction if and only
 if there is a positive real number r < 1 such that |f'(x)| ≤ r for every
 x ∈ (a, b).
 [4]
 - ii. State without proof the Contraction Mapping Theorem. [2]
 - iii. Show that the mapping $f: [-1,1] \longrightarrow [-1,1]$ defined by

$$f(x) = \frac{1}{14}(3x^3 - 2x^2 + 9)$$

is a contraction, and deduce that there is a unique solution to the equation $3x^3 - 2x^2 - 14x + 9 = 0$ in the interval [-1, 1]. [4]

END OF EXAMINATION