UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2012/2013

B.Sc. / B.Ed. / B.A.S.S.IV

TITLE OF PAPER	$:$	METRIC SPACES
COURSE NUMBER	$:$	M431
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS	$:$	1. THIS PAPER CONSISTS OF
		SEVEN QUESTIONS.
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Let $X=\mathbb{R}^{2}$, and for $x, y \in \mathbb{R}^{2}$, let d be the raspberry pickers' function. Show that d is a metric on \mathbb{R}^{2}.
(b) Let $X=\mathcal{C}[-1,1]$, and let $x(t)=t$ and $y(t)=t^{3}$ for $t \in[-1,1]$. Find $d(x, y)$ in $\mathcal{C}[-1,1]$, where d is the
(i) uniform metric,
(ii) L_{1}-metric,
(iii) L_{2}-metric.

QUESTION 2

(a) Let (X, d) be a metric space, and let $A, B, C \subseteq X$. Show that if $A \subseteq B$, then $d(B, C) \leq d(A, C)$.
(b) Let (X, d) be a metric space. Show that the mapping ρ defined below is a metric in each case:

$$
\begin{align*}
& \text { (i) } \rho(x, y)=\min \{d(x, y), 1\} \tag{6}\\
& \text { (ii) } \rho(x, y)=\frac{d(x, y)}{1+d(x, y)} \tag{6}
\end{align*}
$$

(c) Show that infinitely many metrics can be defined on a set X with more than one member.

QUESTION 3

(a) Prove that a subset G of a metric space X is open if and only if G is the union of all open balls contained in it (G).
(b) Let X be a metric space, and let A, B be subsets of X. Prove that:
i. $A \subseteq B \Longrightarrow A^{\circ} \subseteq B^{\circ}$.
ii. $(A \cap B)^{\circ}=A^{\circ} \cap B^{\circ}$.
iii. $A^{\circ} \cup B^{\circ} \subseteq(A \cup B)^{\circ}$.

QUESTION 4

(a) Let X be a metric space, and let F be a subset of X. Prove that F is closed if and only if it's complement, F^{c}, is open in X.
(b) Consider \mathbb{R}^{2} with the New York metric, and let $\left(x^{(n)}\right)_{n \geq 1}$, where $x^{(n)}=\left(x_{1}^{(n)}, x_{2}^{(n)}\right)$, be a sequence of points in \mathbb{R}^{2}. Prove that $\left(x^{(n)}\right)_{n \geq 1}$ converges to $x=\left(x_{1}, x_{2}\right) \in$ \mathbb{R}^{2} if and only if either

1. $x_{1}^{(n)}=x_{1} \forall n \in \mathbb{N}$ and $x_{2}^{(n)} \rightarrow x_{2}$, or
2. $x_{1}^{(n)} \neq x_{1}$ for some $n \in \mathbb{N}$, and $x_{1}^{(n)} \rightarrow x_{1}, x_{2}^{(n)} \rightarrow x_{2}=0$.

QUESTION 5

(a) Let X be a metric space and $\left(x_{n}\right)_{n \geq 1}$ be a sequence in X. What is meant by saying that $\left(x_{n}\right)_{n \geq 1}$ is convergent?
(b) Decide whether or not the following sequences are convergent in the usual (Euclidean) metric on \mathbb{R}^{2} :
(i) $x_{n}=\left(\frac{n^{3}}{3 n^{3}-1}, \frac{3}{3 n+2} \sin \left(\frac{n \pi}{2}\right)\right)$;
(ii) $x_{n}=\left(10^{-n},(-1)^{n} \exp \left(\frac{1}{n}\right)\right)$.
(c) (i) Suppose that $\left(x_{n}\right)_{n \geq 1}$ converges to x in $\mathcal{C}[a, b]$ in the uniform metric. Explain what is meant by pointwise convergence of a sequence $\left(x_{n}\right)_{n \geq 1}$ in $\mathcal{C}[a, b]$. Show that $\left(x_{n}\right)_{n \geq 1}$ converges to x pointwise.
(ii) Let x_{n} in $\mathcal{C}[0,1]$ be defined by

$$
x_{n}(t)=\left\{\begin{aligned}
\frac{n t}{n-1} & \text { if } 0 \leq t \leq 1-\frac{1}{n} \\
n(1-t) & \text { if } 1-\frac{1}{n} \leq t \leq 1
\end{aligned}\right.
$$

Sketch the graph of $x_{n}(t)$ and show that $\left(x_{n}\right)_{n \geq 1}$ converges pointwise to the function

$$
x(t)= \begin{cases}t & \text { if } 0 \leq t<1 \\ 0 & \text { if } t=1\end{cases}
$$

Deduce that $\left(x_{n}\right)_{n \geq 1}$ is not convergent in $\mathcal{C}[0,1]$ in the uniform metric. $[1,5,1]$

QUESTION 6

(a) Describe the open balls $B(a, 3)$ and the closed balls $B[a, 3]$ in \mathbb{R}^{2} with respect to the raspberry pickers' metric, where
i. $a=(0,0)$, and
ii. $a=(2,3)$.
(b) Show that for any two points x and y of a metric space, there exists disjoint open balls such that one is centered at at x and the other one is centered at y.
(c) Prove that the limit point of a set S in a metric space X is either an interior point or a boundary point of S.
(d) Prove that an isolated point of a set S in a metric space X is a boundary point of S^{c}.
(e) Prove that a boundary point of a subset S of a metric space X is either a limit point of S or an isolated point of S.

QUESTION 7

(a) Let f be the function $f: \mathcal{C}[0,1] \longrightarrow \mathbb{R}$ defined for $x \in \mathcal{C}[0,1]$ by $f(x)=x(0)$. Show that f is not continuous with respect to the L_{1}-metric on $\mathcal{C}[0,1]$ (and the usual metric on \mathbb{R}) by considering the functions given by

$$
x_{n}(t)=\left\{\begin{aligned}
(n-1) t & \text { if } 0 \leq t \leq \frac{1}{n} \\
1-t & \text { if } \frac{1}{n} \leq t \leq 1
\end{aligned}\right.
$$

(Hint: Sketch the functions $x_{n}(t)$ and consider their limit in the L_{1}-metric).[6]
(b) Let (X, d) be a metric space with the metric

$$
d(x, y)=\left\{\begin{array}{lll}
0 & \text { if } & x=y \\
3 & \text { if } & x \neq y
\end{array}\right.
$$

Show that any Cauchy sequence in X is eventually constant, and deduce that (X, d) is complete.
(c) i. Explain what is meant by a contraction of a metric space. Show that if $f:[a, b] \longrightarrow[a, b]$ is differentiable, then f is a contraction if and only if there is a positive real number $r<1$ such that $\left|f^{\prime}(x)\right| \leq r$ for every $x \in(a, b)$.
ii. State without proof the Contraction Mapping Theorem.
iii. Show that the mapping $f:[-1,1] \longrightarrow[-1,1]$ defined by

$$
f(x)=\frac{1}{14}\left(3 x^{3}-2 x^{2}+9\right)
$$

is a contraction, and deduce that there is a unique solution to the equation $3 x^{3}-2 x^{2}-14 x+9=0$ in the interval $[-1,1]$.

