UNIVERSITY OF SWAZILAND

•

1

SUPPLEMENTARY EXAMINATIONS 2012/2013

B.Sc. / B.Ed. / B.A.S.S.IV

TITLE OF PAPER	:	METRIC SPACES
COURSE NUMBER	:	M431
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWER ANY <u>FIVE</u> QUESTIONS
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) Let $X = \mathbb{R}^n = \{x = (x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}, 1 \le i \le n\}$ be the set of real *n*-tuples. For $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ in \mathbb{R}^n , define

$$d(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}}$$

[10]

Prove that (X, d) is a metric space.

(b) Let $A \subset \mathbb{R}^2$ be the region bounded by the unit disc centered at (1,0), and let x = (2,1). Find d(x, A) in each of the following metrics:

(i) Chicago metric;	[2]
(ii) Max (or uniform) metric;	[2]
(iii) London (or UK rail) metric;	[2]
(iv) New York metric;	[2]
(v) Raspberry pickers' metric;	[2]

QUESTION 2

Let $A \subset \mathbb{R}^2$ be the region bounded by the unit disc centered at (1,0). Find diam(A) in each of the following metrics:

(i)	Chicago metric;	[2]
(ii)	Max (or uniform) metric;	[2]
(iii)	London (or UK rail) metric;	[4]
(iv)	New York metric;	[6]
(v)	Raspberry pickers' metric;	[6]

- (a) Let A be a subset of a metric space X. Prove that A° is an open subset of A that contains every open subset of A.
 [10]
- (b) Let F be a subset of a metric space. Prove that F', which is the set of limit points of F, is a closed subset of F; that is $(F')' \subseteq F'$. [10]

QUESTION 4

- (a) Let X be a metric space, and let F ⊆ X. Prove that if x₀ is a limit point of F, then every open ball B(x₀, r), where r > 0, contains an infinite number of points of F.
- (b) Let X be a metric space, and let F_1 and F_2 be subsets of X. Prove that:
 - i. If $F_1 \subseteq F_2$, then $F'_1 \subseteq F'_2$; [4]
 - ii. $(F_1 \cup F_2)' = F'_1 \cup F'_2$; and [10]
 - iii. $(F_1 \cap F_2)' \subseteq F_1' \cap F_2'$. [2]

(a) Prove that:

- i. Every convergent sequence is a Cauchy sequence, [3]
- ii. If (x_n)_{n≥1} and (y_n)_{n≥1} are Cauchy sequences in a metric space X, then the sequence (d(x_n, y_n))_{n≥1} is convergent in ℝ.
- (b) What do you understand by the following:
 - i. A nowhere dense metric space; [1]

[1]

- ii. An everywhere dense metric space?
- (c) i. Suppose that (x_n)_{n≥1} converges to x in C[a, b] in the uniform metric. Explain what is meant by *pointwise convergence* of a sequence (x_n)_{n≥1} in C[a, b]. Show that (x_n)_{n≥1} converges to x pointwise. [2,3]
 - ii. Let x_n in $\mathcal{C}[0,1]$ be defined by

$$x_n(t) = \begin{cases} \frac{nt}{n-1} & \text{if } 0 \le t \le 1 - \frac{1}{n}, \\ n(1-t) & \text{if } 1 - \frac{1}{n} \le t \le 1. \end{cases}$$

Sketch the graph of $x_n(t)$ and show that $(x_n)_{n\geq 1}$ converges pointwise to the function

$$x(t) = \begin{cases} t & \text{if } 0 \le t < 1, \\ 0 & \text{if } t = 1. \end{cases}$$

Deduce that $(x_n)_{n\geq 1}$ is not convergent in $\mathcal{C}[0,1]$ in the uniform metric. [1,3,1]

- (a) Prove that in a metric space X, a subset F ⊆ X is closed if and only if the limit of any convergent sequence (x_n)_{n≥1} of points of F is in F.
- (b) Prove that \mathbb{R}^2 equipped with the metric

$$d(x,y) = \alpha |x_1 - y_1| + |x_2 - y_2|; \qquad x = (x_1, x_2), \quad y = (y_1, y_2)$$

[12]

is complete, where the real number $\alpha > 0$ is fixed.

QUESTION 7

- (a) Let X be a nonempty set and let d_1 and d_2 be metrics on X.
 - i. What is meant by saying that the metrics d_1 and d_2 are equivalent? [3]
 - ii. Suppose that there are positive integers k and K such that

$$k d_1(x, y) \le d_2(x, y) \le K d_1(x, y)$$

for all $x, y \in X$. Show that d_1 and d_2 are equivalent. [7]

- (b) Show that on \mathbb{R} the Euclidean metric and the Chicago metric are equivalent.[4]
- (c) Explain what is meant by saying that a metric space is *connected*. Which of the following subspaces or R is connected, and which is disconnected? Give reasons. (Any theorem about connected subsets of R that you use should be stated carefully but not proved.)
 - i. $\mathbb{R} \mathbb{Q}$, [3]
 - ii. $(2,4) \cup (3,\infty),$ [2]
 - iii. [999, 1001). [1]

END OF EXAMINATION