UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012/13

BSC IV

TITLE OF PAPER	$:$	FLUID DYNAMICS
COURSE NUMBER	$:$	M455
TIME ALLOWED	$:$	THREE (3) HOURS
:		1. THIS PAPER CONSISTS OF
INSTRUCTIONS		SEVEN QUESTIONS.
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012/13

BSC IV

TITLE OF PAPER	$:$	FLUID DYNAMICS
COURSE NUMBER	$:$	M455
TIME ALLOWED	$:$	THREE (3) HOURS
P		1. THIS PAPER CONSISTS OF
INSTRUCTIONS		SEVEN QUESTIONS.
		2. ANSWER ANY FIVE QUESTIONS
SPECIAL REQUIREMENTS	$:$	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

USEFUL FORMULAE

The gradient of a function $\psi(r, \theta, z)$ in cylindrical coordinates is

$$
\nabla \psi=\frac{\partial \psi}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \hat{\theta}+\frac{\partial \psi}{\partial z} \hat{k}
$$

The divergence and curl of the vector field

$$
\underline{v}=v_{r} \hat{r}+v_{\theta} \hat{\theta}+v_{z} \hat{k}
$$

in cylindrical coordinates are

$$
\nabla \cdot \underline{y}=\frac{1}{r}\left\{\frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{\partial}{\partial \theta}\left(v_{\theta}\right)+\frac{\partial}{\partial z}\left(r v_{z}\right)\right\}
$$

and

$$
\nabla \times \underline{v}=\frac{1}{r} \operatorname{det}\left[\begin{array}{ccc}
\hat{r} & r \hat{\theta} & \hat{k} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
v_{\mathrm{r}} & r v_{\theta} & v_{z}
\end{array}\right]
$$

The divergence of a vector

$$
\underline{v}=v_{r} \hat{r}+v_{\lambda} \hat{\lambda}+v_{\theta} \hat{\theta}
$$

in spherical coordinates

$$
\nabla \cdot \underline{v}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} v_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial v_{\lambda}}{\partial \lambda}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta v_{\theta}\right)}{\partial \theta}
$$

The convective derivative and Laplacian in cylindrical coordinates are

$$
\begin{aligned}
& \frac{D}{D t}=\frac{\partial}{\partial t}+v_{r} \frac{\partial}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial}{\partial \theta}+v_{z} \frac{\partial}{\partial z} \\
& \nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}}
\end{aligned}
$$

Identities

$$
\begin{aligned}
\underline{v} \cdot \nabla \underline{v} & =\nabla\left(\frac{v^{2}}{2}\right)-\underline{v} \times \underline{\underline{w}} \\
\nabla \times(\nabla \times \underline{a}) & =\nabla \nabla \cdot \underline{a}-\nabla^{2} \underline{a}
\end{aligned}
$$

QUESTION 1

(a) Define a particle path. [4]
(b) Describe the Eulerian method of treating motion of continuous medium.
(c) A velocity field is specified as $\bar{V}=A x y \bar{i}+B y^{2} \bar{j}$, where $A=1 m^{-1} s^{-1}$, $B=-\frac{1}{2} m^{-1} s^{-1}$, and the coordinates are measured in meters.
(i) Find the dimension of flow fluid. Explane.
(ii) Calculate the velocity components at the point $(1,2,0)$.
(iii) Develop an equation for the streamline passing through this point
(d) (i) Derive the formular for convective derivative of the density.
(ii) What is a physical meaning of convective derivative of velocity?

QUESTION 2

(a) The three components of velocity are given by $u=A x+B y+C z$,
$V=D x+E y+F z$ and $w=G x+H y+J z$.
Determine the relationship among the coefficients A through J that is necessary if this is to be a possible incompressible flow.
(b) Consider two-dimensional incompressbile flow.
(i) Define the stream function $\psi(x, y)$,
(ii) Show that $\psi(x, y)=\int_{b}^{y} u(x, \eta) d \eta-\int_{a}^{x} U(\xi, b) d \xi$
where a and b are constants.
(c) Determine the family of stream functions that will yield the velocity field
$\bar{V}=\left(x^{2}-y^{2}\right) \bar{i}-2 x y \bar{j}$.
(d) Incompressible flow around a circular cylinder of radius a has a stream function $\psi(r, \theta)=-U r \sin \theta+\frac{U a^{2} \sin \theta}{r}, U$ is constant.
(i) obtain an expression for the velocity field,
(ii) find V_{r} along the circle $r=a$,
(iii) Locate the points along $r=a$ where $|\bar{V}|=U$.

QUESTION 3

(a) Consider a piston-cylinder apparatus. At one instant when the piston is L_{0} away from the closed end of the cylinder the gas density is uniform at $\rho=\rho_{0}$, and the piston begins to move away from the closed end at $V=V_{0}$. The gas velocity is one-dimensional and proportional to the distance from the closed end; it varies linearly from zero at the end to $U=V_{0}$ at the piston.
(i) Show that $\left.\frac{d \rho}{d t}\right|_{t=0}=-\rho_{0} \frac{V_{0}}{L_{0}}$,
(ii) Find $\rho(t)$.

HINT: Density ρ is independent of x.
(b) Water flows along a pipe whose area of cross-section $A(x)$ varies slowly with the coordinates x along the pipe. Flow is almost in x-direction.
(i) Explain average velocity over cross-section
(ii) What is Eulerian acceleration?
(iii) Show that Lagrange acceleration is $a_{L}=-\frac{Q^{2}}{A^{3}} \frac{d A}{d x}$, where Q is a volume flow rate. $[2,1,4]$
(c) Prove $\bar{V}=\nabla+\psi \bar{k}$ in the usual notations.

QUESTION 4

a) Consider a so-called "rigid-body rotation"' model: $V_{r}=0, V_{\theta}=A r$, where A is a constant. Find stream function.
b) Consider the Rankine's vortex
$\varpi=\left\{\begin{array}{ccc}\Omega \bar{k}, & \text { for } & r<a \\ 0, & \text { for } & r>a\end{array}\right.$
(i) Find the stream function,
(ii) Find velocity V_{θ}.

HINT: $\nabla+(\nabla+\bar{A})=\nabla \nabla \cdot \bar{A}-\nabla^{2} \bar{A}$.
(c) A flow is respresented by the velocity field
$\bar{V}=\left(4 x^{2}+3 y\right) \bar{i}+(3 x-2 y) \bar{j}$
Determine if the field is
(i) a possible incompressible flow,
(ii) irrational.

QUESTION 5

a) Describe the stress components σ_{n} and τ_{n}.
b) Consider liquid of constant density ρ in the field of gravity. Show that

$$
p=p_{0}-\rho g z
$$

in the usual notations.
c) Define the Newtonian fluid.
d) The velocity distribution for laminar flow between fixed parallel plates is given by

$$
u=u_{\max }\left[1-\left(\frac{2 y}{h}\right)^{2}\right]
$$

where h is the distance separating the plates, and the origin is placed midway between the plates.
Consider $\mu=1.1 \times 10^{-3} \mathrm{~kg} / \mathrm{ms}, u_{\max }=0.05 \mathrm{~m} / \mathrm{s}, \quad h=5 \mathrm{~mm}$. Calculate
(i) the shear stress on the lower plate and give direction,
(ii) the force on a $0.3 \mathrm{~m}^{2}$ section of the lower plate and give its direction
e) Write Navier-Stokes equation for inviscid flow.

QUESTION 6

a) A velocity field in a fluid with density of $1500 \mathrm{~kg} / \mathrm{m}^{3}$ is given by

$$
\bar{V}=(A x-B y) t \bar{i}-(A y+B x) t \bar{j},
$$

where $A=1 s^{-2}, \quad B=2 s^{-2}, x$ and y are meters, and t in seconds. Body and viscous forces are negligible.
(i) Find the acceleration of a field particle at point $(x, y)=(1,2)$ and $t=1$ sec.
(ii) Find the pressure gradient at the same point and same time.
b) Consider steady viscous incompressible flow between two stationery plates located at $y=0$ and $y=1$. Given that pressure at $x=0$ and $x=L$ is p_{o} and p_{L} respectively, with $p_{0}>p_{L}$. The effect of body forces is negligible. Put $\bar{V}=u(x, y) \bar{i}$ and show that
(i) $\frac{\partial p}{\partial x}=\mu \frac{\partial^{2} u}{\partial y^{2}}$,
(ii) $p(x)=p_{0}-\frac{p_{0}-p_{L}}{L} x$,
(iii) $u(y)=y(1-y) \frac{p_{0}-p_{L}}{2 \mu L}$.

QUESTION 7

a) Derive the Navier-Stokes equation in dimensionless form introducing the characteristic length and velocity.
b) (i) Define Reynolds number,
(ii) Find dimension of Reynolds number.
c) Water flow in a circular pipe. At one section the diameter is 0.3 m , the static pressure is 260 kpa (gage), the velocity is $3 \mathrm{~m} / \mathrm{s}$, and the elevation is 10 m above ground level. At a section downstream at ground level the pipe diameter is 0.15 m . Friction effects may be neglected.
(i) Write Bernoulli's equation,
(ii) Find velocity at downstream section,
(iii) Calculate the gage pressure at the downstream section.

