University of Swaziland

Final Examination – November 2013

BSc I, BEng I, BEd I

Title of Paper: Algebra, Trigonometry & Analytic GeometryCourse Number: M111Time Allowed: Three (3) hours

Instructions:

1. This paper consists of 2 sections.

2. Answer ALL questions in Section A.

3. Answer ANY 3 (out of 5) questions in Section B.

4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A Answer ALL Questions in this section	2
a. Give a concise definition of each of the following terms.	
i. The <i>minor</i> of a matrix	[2 marks]
ii. The <i>conjugate</i> of a complex number	[2 marks]
b. State	
i. de Moivre's Theorem	[2 marks]
ii. The Remainder Theorem	[2 marks]
c. Sketch the graph of $y = 1 - e^x$.	[2 marks]
a. Work out	
i. $\left(x-\frac{2}{x}\right)^5$ (using the <i>Binomial theorem</i>)	[5 marks]
ii. $\frac{x^4 - x^2 + x + 1}{x + 1}$ (using the synthetic division)	[4 marks]
iii. $\frac{20i}{1-3i}$ (and express your answer in the form $x + iy$)	[3 marks]
b. Given the vectors $\underline{A} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\underline{B} = 7\hat{i} + 5\hat{j} - 3\hat{k}$, find	
i. $\underline{A} \cdot \underline{B}$	[2 marks]
ii. $\underline{A} \times \underline{B}$	[5 marks]
c. Find the <i>centre</i> and <i>radius</i> of the circle defined by	
$x^2 + y^2 - 14x + 10y - 70 = 0.$	[4 marks
d. Given that $\cos \theta = \frac{1}{\sqrt{5}}$ where $180^0 < \theta < 360^0$, find the <i>exact</i> value of	of $\sin \theta$. [4 marks]
e. Find the value of the sum $\sum_{n=1}^{\infty} 50 \left(\frac{4}{9}\right)^n$.	[3 marks
	Answer ALL Questions in this section a. Give a concise definition of each of the following terms. i. The <i>minor</i> of a matrix ii. The <i>conjugate</i> of a complex number b. State i. de Moivre's Theorem ii. The Remainder Theorem c. Sketch the graph of $y = 1 - e^x$. a. Work out i. $\left(x - \frac{2}{x}\right)^5$ (using the <i>Binomial theorem</i>) ii. $\frac{x^4 - x^2 + x + 1}{x + 1}$ (using the <i>synthetic division</i>) iii. $\frac{20i}{1 - 3i}$ (and express your answer in the form $x + iy$) b. Given the vectors $\underline{A} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\underline{B} = 7\hat{i} + 5\hat{j} - 3\hat{k}$, find i. $\underline{A} \cdot \underline{B}$ ii. $\underline{A} \times \underline{B}$ c. Find the <i>centre</i> and <i>radius</i> of the circle defined by $x^2 + y^2 - 14x + 10y - 70 = 0$. d. Given that $\cos \theta = \frac{1}{\sqrt{5}}$ where $180^0 < \theta < 360^0$, find the <i>exact</i> value of e. Find the value of the sum

.

.

.*

¥

•

3 **Section B** Answer ANY 3 Questions in this section **B.1** a. Evaluate and express in the form x + iy. $4i^{19}(2+3i) - 3i(4-2i)$ i. [4 marks] $2(\cos 240^0 + i \sin 240^0) \cdot 7(\cos 120^0 + i \sin 120^0)$ ii. [2 marks] b. Use de Moivre's thoerem to evaluate (and express in the form x + iy) $\left(1-i\sqrt{3}\right)^6$. [4 marks] c. Consider the polynomial $P(z) = 6z^4 + Az^3 + Bz^2 + 4z - 8.$ where both A and B are real coefficients. i. Given that z = 2i is a root of P(z), find the values of A and B. [4 marks] ii. Hence find all the other roots of P(z). [6 marks] **B.2** a. Find the exact value of $\cos 832\frac{1}{2}^0$. [3 marks] b. Given that $\sin A = \frac{\sqrt{7}}{4}$, $\cos B = \frac{3}{5}$ where A is in QII while B is in QIV, find the exact values of i. $\sin(A+B)$ [2 marks] ii. $\cos(A+B)$ [2 marks] Hence state, with reasons, the qudrant in which the angle A + B lies. [2 marks] c. Prove $\cos(A+B)\cos(A-B) = 1 - \sin^2 A - \sin^2 B.$ [6 marks] d. Find the general solution of $2\cos^2\theta - \sin\theta - 1 = 0.$ [5 marks] **B.3** a. Find the *first 4 terms* in the binomial expansion of

 $\left(\frac{1}{x^2} - 2x\right)^{\frac{3}{2}}.$ [6 marks]

b. Find the term involving $\frac{1}{x^2}$ in the binomial xpansion of

 $\left(x^3 - \frac{2y}{x}\right)^{18}.$ [6 marks]

c. The sum of the first *n* terms of a geometric progression (GP) with first term T_1 and common ratio *r*, is given by

$$S_n = T_1 \frac{(1-r^n)}{1-r}, \ n \ge 1, \ r \ne 1.$$

[3 marks]

[5 marks]

ii. Hence find the sum of the last 10 terms in the GP

5, 10, 20, \cdots , 81 920, 163 840. [5 marks]

B.4

¢,

a. Express as a single logarithm with coefficient 1, and simplify

$$4 - 4\log_2(2\sqrt{a}) + 2\log_2(a\sqrt{2}).$$
 [5 marks]

b. Solve

i. $7^{2x-1} = 2$ [3 marks]

ii. $30e^x + 8e^{-x} = 53$

i. Derive this formula

c. Consider the formula

 $y = \ln t - \ln(kt + 1).$

i. Make t the subject of the formula. [5 marks]
ii. Find the value of y (correct to 3 s.f.) if k = 7 and t = 40. [2 marks]

B.5

1

~~~

a. Given that 
$$A = \begin{pmatrix} 4 & -1 & 1 \\ 2 & 0 & -3 \end{pmatrix}$$
 and  $B = \begin{pmatrix} -2 & 1 \\ 1 & -3 \end{pmatrix}$ , work out  
 $AA^T - BB^T$ . [5 marks]

b. Find the value of the determinant

$$\begin{vmatrix} 1 & 0 & -1 \\ \sec \theta & \sin \theta & -\cos \theta \\ -\csc \theta & \cos \theta & \sin \theta \end{vmatrix}.$$
 [5 marks]

c. Use mathematical induction to prove the formula

$$T_1 + T_1 r + T_1 r^2 + T_1 r^3 + \dots + T_1 r^{n-1} = T_1 \frac{(1-r^n)}{1-r}, \ n \ge 1, \ r \ne 1.$$
 [10 marks]

5

4