University of Swaziland

Supplementary Examination - July 2014

BSc I, BEng I, BEd I
Title of Paper : Algebra, Trigonometry \& Analytic Geometry
Course Number : M1ll
Time Allowed : Three (3) hours
\section*{Instructions:}
1. This paper consists of 2 sections.
2. Answer ALL questions in Section A.
3. Answer ANY 3 (out of 5) questions in Section B.
4. Show all your working.

This paper should not be opened until permission has been given BY THE INVIGILATOR.

Section A
 Answer ALL Questions in this section

A. 1 a. Give a concise definition of each of the following terms.
i. The minor of a matrix [2 marks]
ii. The conjugate of a complex number
[2 marks]
b. State two double-angle formulas for $\cos 2 \theta$ [2 marks]
c. Sketch the graphs of $y=\sin \theta$ and $y=\cos \theta$ on the same axis in the interval $-180^{\circ} \leqslant \theta \leqslant 180^{\circ}$.
A. 2 a. Work out
i. $\left(2 x^{2}-3\right)^{5}$ (using the Binomial theorem) [5 marks]
ii. $\frac{x^{4}-16}{x+2}$ (using the synthetic division) [3 marks]
iii. $(1+2 i)(1-3 i)(1+4 i)$ (and express your answer in the form $x+i y$) [3 marks]
iv. $\log _{6} b^{5}+\ln e^{2 m-5}-\log 10^{2-3 m}$
[3 marks]
b. Given the vectors $\underline{A}=\hat{i}-\hat{j}+2 \hat{k}$ and $\underline{B}=2 \hat{i}+2 \hat{j}-1 \hat{k}$, find
i. $\underline{A} \cdot \underline{B}$
[2 marks]
ii. $\underline{A} \times \underline{B}$
c. Find the centre and radius of the circle defined by

$$
x^{2}+y^{2}+6 y-70=0
$$

d. Given that $\sin \theta=\frac{1}{2}$ where $90^{\circ}<\theta<270^{\circ}$, find the exact value of $\sin \theta$.
[3 marks]
e. Find the value of the sum

$$
\sum_{n=-10}^{50}(18-7 n)
$$

[3 marks]

Answer ANY 3 Questions in this section

B. 1 a. Evaluate and express in the form $x+i y$.
i. $\left(3-5 i^{11}\right)^{2}$ [4 marks]
ii. $\frac{12\left(\cos 240^{\circ}+i \sin 240^{\circ}\right)}{4\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)} \quad$ [2 marks]
b. Use de Moivre's thoerem to evaluate (and express in the form $x+i y$)

$$
(3+3 i)^{6} .
$$

[4 marks]
c. Find all the fourth roots of 81 .
[10 marks]
B. 2 a. Find the exact value of $\cos 105^{\text {. }}$.
[3 marks]
b. Given that $\cos A=\frac{\sqrt{3}}{2}$ where A is in $Q I V$, find the exact values of
i. $\sin A$
ii. $\cos 2 A$
c. Prove

$$
\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1 .
$$

[5 marks]
d. Find the general solution of

$$
2 \cos ^{2} \theta-\sin \theta-2=0 .
$$

B. 3 a. Find the first 4 terms in the binomial expansion of

$$
\left(\frac{1}{x}-2 x\right)^{-2}
$$

[6 marks]
b. Find the term that does not involve x in the binomial expansion of

$$
\left(x^{4}+\frac{y}{x}\right)^{20}
$$

[6 marks]
c. Find 3 numbers in arithmetic progression whose product is 210 while their sum is 30 .
B. 4
a. Express as a single logarithm with coefficient 1 , and simplify

$$
2 \ln \left(\frac{b^{2} c}{\sqrt{a}}\right)+4 \ln \left(\frac{a}{b \sqrt{c}}\right)
$$

b. Solve
i. $\quad 7^{3 x-2}=2$
[3 marks]
ii. $\quad 4^{x+1}-5 \cdot 2^{x}=-1$
[5 marks]
c. The population of a city grows according to the formula

$$
P(t)=250,000 e^{0.013 t}
$$

where t is time (in years) from the year 2000.
i. Find the population in the year 2014.
ii. Find the date when the population will be double that in 2000 . [5 marks]

B. 5

a. Given that $A=\left(\begin{array}{rrr}4 & -1 & 1 \\ 2 & 0 & -3\end{array}\right)$ and $B=\left(\begin{array}{rr}-2 & 1 \\ 1 & -3\end{array}\right)$, work out

$$
\left(A A^{T}\right)\left(B B^{T}\right)
$$

b. Find the value of the determinant

$$
\left|\begin{array}{rrrr}
1 & 0 & -1 & 2 \\
2 & 0 & -2 & 1 \\
1 & -1 & 0 & -3 \\
-4 & 0 & 0 & 5
\end{array}\right| .
$$

c. Use mathematical induction to prove that

$$
P(n)=3^{2 n}-1,
$$

is always divisible by 4 , where $n \geqslant 1$ is an integer.

