University of Swaziland

Final Examination, 2013/2014

B.Sc. II, B.Eng II, B.Ed II, BASS II

Title of Paper : Calculus II
Course Number : M212
Time Allowed : Three (3) Hours
\section*{Instructions}

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None
This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: Answer ALL Questions

A1. (a) For each of the following use a double integral to find the area bounded by the curves
(i) $y=x^{3}+8, \quad y=4 x+8$
(ii) $x=y(y-2), \quad y+x=12$
(b) Show that the function
$f(x, y)=\frac{x y}{x-y}$
satisfies
$x^{2} \frac{\partial^{2} f}{\partial x^{2}}+2 x y \frac{\partial^{2} f}{\partial x \partial y}+y^{2} \frac{\partial^{2} f}{\partial y^{2}}=0$
A2. (a) Find and classify the critical points of $f(x, y)=4 x y-x^{4}-y^{4}$
(b) Evaluate
$\int_{0}^{1} \int_{0}^{+\sqrt{x-x^{2}}} y^{2} d y d x$

SECTION B: Answer any THREE Questions

QUÉSTION B1 [20 Marks]

B1. (a) Use the Lagrange multipliers to find the maximum and minimum values of the function

$$
f(x, y)=3 x+4 y
$$

subject to the constraint

$$
\begin{equation*}
x^{2}+y^{2}=1 \tag{10}
\end{equation*}
$$

(b) Find the volume under the surface $f(x, y)=e^{-(x+y)}$ and above the region of the $x y$ - plane bounded by $y=x, x=\frac{1}{2}, x=1$ and $y=0$
(c) Express in polar form

$$
\begin{equation*}
x^{2}+y^{2}=\sqrt{x^{2}+y^{2}}-4 x \tag{2}
\end{equation*}
$$

B2. (a) (i) Sketch the graph of the curve

$$
v=1-\cos \theta
$$

(ii) Find the length of the curve
(b) Use the chain rule to find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial s}$ where

$$
z=x^{2} \sin y, \quad x=r^{2}+s^{2}, \quad y=2 r s
$$

(c) Evaluate

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{x^{2}} \int_{x y}^{x+y} x y z d z d y d x \tag{8}
\end{equation*}
$$

QUESTION B3 [20 Marks]

B3. (a) Assuming that the equation

$$
x^{3}+x^{2} y-x^{2} z+z^{3}-2=0
$$

defines z implicitly as a function of x and y, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
(b) Find $\frac{d z}{d t}$ if $z=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}, x=t^{2}-3 t+2 \quad y=-t^{2}-5 t+7$
(c) Evaluate the iterated integral

$$
\begin{equation*}
\int_{0}^{8} \int_{3 \sqrt{y}}^{2} e^{x^{4}} d x d y \tag{8}
\end{equation*}
$$

QUESTION B4 [20 Marks]

B4. (a) Evaluate the iterated integral by first converting to polar co-ordinates.

$$
\begin{equation*}
\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} x^{2} y^{2} d x d y \tag{8}
\end{equation*}
$$

(b) Find the directional derivative of the function

$$
f(x, y, z)=x^{3} e^{y}+x z
$$

at the point (4016) in the direction of the vector $v=6 i-\hat{j}+12 \hat{h}$
(c) Express in rectangular form

$$
\begin{equation*}
r^{2}=9 \sin 2 \theta \tag{4}
\end{equation*}
$$

QUESTION B5 [20 Marks]

B5. (a) Sketch the cardinal

$$
\begin{equation*}
r=1+\sin \theta \tag{5}
\end{equation*}
$$

(b) Find the area inside the cardiod in (a)
(c) Evaluate the following integrals
(i) $\iint_{v} \int\left(x^{2}+y^{2}\right) d x d y d x$
where v is described by $1 \leq x \leq 2,0 \leq y \leq 1 \quad 2 \leq z \leq 5$
(ii) $\iint_{v} \int(2 x-y-z) d x d y d z$
v is described by $0 \leq x \leq 1, \quad 0 \leq y \leq x^{2} \quad 0 \leq z \leq x+y$

End of Examination Paper

