University of Swaziland

Supplementary Examination, 2013/2014
B.Sc. II, B.Eng II, B.Ed II, BASS II

Title of Paper	$:$ Calculus II
Course Number	$:$ M212
Time Allowed	$:$ Three (3) Hours
Instructions	

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: Answer ALL Questions

A1. (a) Given that

$$
\begin{equation*}
f(x, y)=x^{2}+x y-y^{2} \sin \left(\frac{x}{y}\right) \tag{5}
\end{equation*}
$$

(i) Find $f_{x}, f_{y}, f_{x x}, f_{x y}$ and $f_{y y}$.
(ii) Verify that

$$
x f_{x}+y f_{y}=2 f
$$

and that

$$
\begin{equation*}
x^{2} f_{x x}+2 x y f_{x y}+y^{2} f_{y y}=2 f . \tag{3}
\end{equation*}
$$

(b) Using ad double integral. find the aren of the region bomeded by the curves $x y=$ $2, x=2 \sqrt{2}$ and $y=4$.

A2. (a) Find and classify the critical points of the function

$$
f(x, y)=y^{3}+x^{2}-8 x y+3 x+6 y
$$

(b) Use Lagrange multipliers to find the maximum and minimum values of the function

$$
f(x, y, z)=x y z
$$

subject to

$$
x^{2}+y^{2}+z^{2}=1
$$

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Consider the cardioid

$$
r=1-\cos \theta
$$

(i) Sketch the cardioid.
(ii) Find the length of the cardioid
(b) Find an equation in polar co-ordinates for each of the following curves
(i) $2 x+3 y=3$
(ii) $x^{2}-2 x+y^{2}=0$

B2. (a) Evaluate the following integral
(a) $\int_{0}^{1} \int_{0}^{\sqrt{x-x^{2}}} y^{2} d y d x$
(b) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}-x^{2}}} x^{3} y z d x d y d z$

QUESTION B3 [20 Marks]

B3. (a) Suppose that $z=f(x, y), x=r \cos \theta$ and $y=r \sin \theta$.
Prove that

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}=\left(\frac{\partial f}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial f}{\partial \theta}\right)^{2} \tag{10}
\end{equation*}
$$

(b) Find the directional derivative of

$$
\begin{equation*}
z=f(x, y)=r^{3} e^{y}+x z \tag{10}
\end{equation*}
$$

in the direction of the vectur from $P_{1}(4,0.16)$ to $P_{2}(-2.1 .4)$.

QUESTION B4 [20 Marks]

B4. (a) Find the volume under the surface

$$
\begin{equation*}
z=x^{4} y^{4} \tag{10}
\end{equation*}
$$

and over the circle $x^{2}+y^{2}=1$.
(b) (i) Sketch the graph of the curve

$$
\begin{equation*}
f=1-\sin \theta \tag{12}
\end{equation*}
$$

(ii) Find the area of the region enclosed by the curve in (i).

B5. (a) Find the equation of the tangen surface $x y z^{3}+y z^{2}=4$ at the poim (1.2.1).
(b) Find the equation of the plane through the 3 points $P(1,2,3) . \quad(Q(-2,0,4)$ and (5, 2, -1).
(c) Evaluate

$$
\begin{equation*}
\iint_{R} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y \tag{3}
\end{equation*}
$$

where R is the region bounded by the lines $y=x, y=-2$ and $x=0$.

End of Examination Paper

