University of Swaziland

Final Examination, April 2014

B.Sc II, B.A.S.S II, B.Ed II, B.Eng II

Title of Paper : Ordinary Differential Equations
Course Code : M213
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given by the invigillator.

Question 1

(a) Define each of the following terms and give an example
(i) Initial value problem.
(ii) Homogeneous function. [3]
(iii) Linear ordinary differential equation.
(iv) Ordinary point for a second order linear ordinary differential equation.
(b) Given that if $y_{1}(x)$ and $y_{2}(x)$ are two different solutions of

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

Is the function $r(x)=c\left(y_{1}(x)-y_{2}(x)\right)+y_{2}(x)$ a solution of the differential equation where c is a constant? Explain.
(c) Prove that if

$$
M(x, y) d x+N(x, y) d y=0
$$

is a homogeneous differential equation, then the change of variables $y=u x$ transforms the differential into a separable differential equation with variables u and y. [7]
(d) (i) Given the function

$$
g(t)= \begin{cases}0, & 0 \leq t \leq a \\ f(t-a), & a<t\end{cases}
$$

Show that

$$
\mathcal{L}[g(t)]=e^{-a s} \mathcal{L}[f(t)]
$$

(ii) Using the result in $\mathrm{d}(\mathrm{i})$, find $\mathcal{L}[g(t)]$ where

$$
g(t)= \begin{cases}0, & 0 \leq t \leq \pi \\ e^{t-\pi}, & \pi<t\end{cases}
$$

(e) Show that the solution for the differential equation

$$
p(x) y^{\prime}(x)+q(x) y(x)=r(x)
$$

is given by

Hence solve

$$
y(x)=e^{-\int \frac{q(x)}{p(x)} d x}\left(\int \frac{r(x)}{p(x)} e^{\int \frac{q(x)}{p(x)} d x}+c\right) .
$$

$$
x y^{\prime}+2 y=4 x^{2}
$$

Question 2

(a) Using the substitution $u=\ln x$. Find the general solution of

$$
2 x^{2} y^{\prime \prime}-3 x y^{\prime}+2 y=0
$$

(b) Solve the following differential equation

$$
y^{\prime \prime}+y=\sec x
$$

Use the inethod of variation of parameters to find the particular solution.

Question 3

Solve the following differential equations
(a) $x y^{\prime}+(x+1) y=1$.
(b) $y^{\prime \prime}+2 y^{\prime}=x+1$.
(c) $y^{\prime}=x e^{x+y}$.
(d) $y^{\prime \prime}-\frac{2}{x} y^{\prime}+\frac{2}{x^{2}} y=0$.

Question 4

(a) Show that the change of variable

$$
y=-\frac{1}{P(x) z} \frac{d z}{d x}
$$

transforms the equation

$$
\frac{d y}{d x}=P(x) y^{2}+Q(x) y+R(x)
$$

into a second order linear differential equation

$$
\frac{d^{2} z}{d x^{2}}-\left(Q(x)+\frac{1}{P(x)} \frac{d P}{d x}\right) \frac{d z}{d x}+P(x) R(x) z=0
$$

Hence solve the equation

$$
\frac{d y}{d x}=x y^{2}+\left(2-\frac{1}{x}\right) y-\frac{3}{x} .
$$

$$
(y \cos (x y)+1) d x+(x \cos (x y)) d y=0 .
$$

Question 5

(a) Given $y=x$ is a solution of

$$
\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0
$$

find another linearly independent solution by reducing the order.
(b) Solve using the method of Laplace transforms

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=5, \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Question 6

(a) Locate and classify the singular point(s) of the following differential equation

$$
\begin{equation*}
9 x^{2} \frac{d^{2} y}{d x^{2}}+9 x \frac{d y}{d x}+\left(9 x^{2}-1\right) y=0 \tag{3}
\end{equation*}
$$

(b) By using the appropriate method, find the series solution of the differential equation in (a) about $x=0$.
(b) Solve the following differential equation

$$
(y \cos (x y)+1) d x+(x \cos (x y)) d y=0
$$

Question 5

(a) Given $y=x$ is a solution of

$$
\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0,
$$

find another linearly independent solution by reducing the order.
(b) Solve using the method of Laplace transforms

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=5, \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Question 6

(a) Locate and classify the singular point(s) of the following differential equation

$$
\begin{equation*}
9 x^{2} \frac{d^{2} y}{d x^{2}}+9 x \frac{d y}{d x}+\left(9 x^{2}-1\right) y=0 \tag{3}
\end{equation*}
$$

(b) By using the appropriate method, find the series solution of the differential equation in (a) about $x=0$.

Table 1: Table of Laplace Transforms

$f(t)$	$F(s)=\mathcal{L}[f(t)]$
t^{n}	$\frac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$
$e^{a t}$	$\frac{1}{s-a}$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$
$\frac{1}{a-b}\left(e^{a t}-e^{b t}\right)$	$\frac{1}{(s-a)(s-b)}$
$\frac{1}{a-b}\left(a e^{a t}-b e^{b t}\right)$	$\frac{s}{(s-a)(s-b)}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
$\sin (a t)-a t \cos (a t)$	$\frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}}$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$
$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$
$\begin{gathered} \sin (a t) \sinh (a t) \\ \frac{d^{n} f}{d t^{n}}(t) \end{gathered}$	$\begin{gathered} \frac{2 a^{2}}{s^{4}+4 a^{4}} \\ s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0) \end{gathered}$
$g(t)= \begin{cases}0, & 0 \leq t \leq a \\ f(t-a), & a<t .\end{cases}$	$e^{-a s} F(s)$

