University of Swaziland

Final Examination, April 2014

B.Sc II, B.A.S.S II, B.Ed II, B.Eng II

Title of Paper	: Ordinary Differential Equations
Course Code	: M213
Time Allowed	: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

- a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
- b. SECTION B: 60 MARKS Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.
- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Non programmable calculators may be used (unless otherwise stated).
- 5. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

1

Question 1

- (a) Define each of the following terms and give an example
 - (i) Initial value problem.
 - (ii) Homogeneous function.
 - (iii) Linear ordinary differential equation.
 - (iv) Ordinary point for a second order linear ordinary differential equation. [3]
- (b) Given that if $y_1(x)$ and $y_2(x)$ are two different solutions of

$$\frac{dy}{dx} + P(x)y = Q(x).$$

Is the function $r(x) = c(y_1(x) - y_2(x)) + y_2(x)$ a solution of the differential equation where c is a constant? Explain. [3]

(c) Prove that if

$$M(x,y)dx + N(x,y)dy = 0$$

is a homogeneous differential equation, then the change of variables y = ux transforms the differential into a separable differential equation with variables u and y. [7]

(d) (i) Given the function

$$g(t) = \begin{cases} 0, & 0 \le t \le a; \\ f(t-a), & a < t. \end{cases}$$

Show that

$$\mathcal{L}[g(t)] = e^{-as} \mathcal{L}[f(t)].$$

(ii) Using the result in d(i), find $\mathcal{L}[g(t)]$ where

$$g(t) = \begin{cases} 0, & 0 \le t \le \pi \\ e^{t-\pi}, & \pi < t. \end{cases}$$

(e) Show that the solution for the differential equation

$$p(x)y'(x) + q(x)y(x) = r(x)$$

is given by

$$y(x) = e^{-\int \frac{q(x)}{p(x)} dx} \left(\int \frac{r(x)}{p(x)} e^{\int \frac{q(x)}{p(x)} dx} + c \right).$$

Hence solve

$$xy' + 2y = 4x^2$$

[10]

[5]

[3]

 $\mathbf{2}$

[3] [3]

[3]

Question 2

(a) Using the substitution $u = \ln x$. Find the general solution of

$$2x^2y'' - 3xy' + 2y = 0$$

(b) Solve the following differential equation

$$y'' + y = \sec x$$

Use the method of variation of parameters to find the particular solution. [10]

Question 3

Solve the following differential equations

(a)
$$xy' + (x + 1)y = 1.$$
 [5]
(b) $y'' + 2y' = x + 1.$ [5]
(c) $y' = xe^{x+y}.$ [5]
(d) $y'' - \frac{2}{x}y' + \frac{2}{x^2}y = 0.$ [5]

Question 4

(a) Show that the change of variable

$$y = -\frac{1}{P(x)z}\frac{dz}{dx}$$

transforms the equation

$$\frac{dy}{dx} = P(x)y^2 + Q(x)y + R(x)$$

into a second order linear differential equation

$$\frac{d^2z}{dx^2} - \left(Q(x) + \frac{1}{P(x)}\frac{dP}{dx}\right)\frac{dz}{dx} + P(x)R(x)z = 0.$$

Hence solve the equation

$$\frac{dy}{dx} = xy^2 + \left(2 - \frac{1}{x}\right)y - \frac{3}{x}.$$

[13]

[10]

(b) Solve the following differential equation

 $(y\cos(xy) + 1)dx + (x\cos(xy))dy = 0.$ [7]

Question 5

(a) Given y = x is a solution of

$$(x^2 - 1)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0,$$

find another linearly independent solution by reducing the order. [10] (b) Solve using the method of Laplace transforms

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 5, \quad y(0) = 0, \quad y'(0) = 0.$$
[10]

Question 6

(a) Locate and classify the singular point(s) of the following differential equation

$$9x^2\frac{d^2y}{dx^2} + 9x\frac{dy}{dx} + (9x^2 - 1)y = 0.$$

(b) By using the appropriate method, find the series solution of the differential equation in (a) about x = 0. [17]

4

38

[3]

(b) Solve the following differential equation

`.

$$(y\cos(xy)+1)dx + (x\cos(xy))dy = 0.$$

Question 5

(a) Given y = x is a solution of

$$(x^2 - 1)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0,$$

find another linearly independent solution by reducing the order. [10]

(b) Solve using the method of Laplace transforms

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 5, \quad y(0) = 0, \quad y'(0) = 0.$$
[10]

Question 6

(a) Locate and classify the singular point(s) of the following differential equation

$$9x^2\frac{d^2y}{dx^2} + 9x\frac{dy}{dx} + (9x^2 - 1)y = 0.$$

[3]

(b) By using the appropriate method, find the series solution of the differential equation in (a) about x = 0. [17]

4

38

[7]

ł,	Table 1: Table of	f Laplace Transforms
	f(t)	$F(s) = \mathcal{L}[f(t)]$
	t^n	$rac{n!}{s^{n+1}}$
	$\frac{1}{\sqrt{t}}$	$\sqrt{rac{\pi}{s}}$
	e^{at}	$\frac{1}{s-a}$
	$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
	$\frac{1}{a-b} \Big(e^{at} - e^{bt} \Big)$	$\frac{1}{(s-a)(s-b)}$
	$\frac{1}{a-b} \Big(a e^{at} - b e^{bt} \Big)$	$\frac{s}{(s-a)(s-b)}$
	$\sin(at)$	$rac{a}{s^2+a^2}$
	$\cos(at)$	$rac{s}{s^2+a^2}$
	$\sin(at) - at\cos(at)$	$\frac{2a^3}{(s^2+a^2)^2}$
	$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$
	$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$
	$\sinh(at)$	$rac{a}{s^2-a^2}$
	$\cosh(at)$	$\frac{s}{s^2-a^2}$
	$\sin(at)\sinh(at)$	$\frac{2a^2}{s^4 + 4a^4}$
	$\frac{d^n f}{dt^n}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \cdots - f^{(n-1)}(0)$
	$g(t) = \begin{cases} 0, & 0 \le t \le a; \\ f(t-a), & a < t. \end{cases}$	$e^{-as}F(s)$
		5

•