UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, 2013/2014

B.Sc. II, BASS II, BED. II

Title of Paper	: Linear Algebra
Course Number	: M220
Time Allowed	: Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer **ALL** questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

4

SECTION A [40 Marks]: ANSWER	LALL QUESTIONS 49
A1. (a) Define a vector space	(4)
(b) Define a linear transformation	(3)
(c) Which of the following are linear transf	ormations?
(i) $T: p_2(x) \to p_1(x); T(ax^2 + bx + c)$	c) = 2ax + b
(ii) $T: \mathbb{R}^3 \to \mathbb{R}^3; \ T(x, y, z) = (x+1, 2)$	(8)
(d) Show that $(12, 12, -3)$ is linear combinat	tion of the vectors $(2, 0, 1), (4, 2, 0), (1, 3, -1)$ (5)
A2. (a) Let $s = \{v_1, v_2, \cdots, v_n\}$ be a set of vector what is meant by each of the following	
(i) s spans V	

- (ii) s is a basis for V
- (iii) s is linearly independent.
- (b) Determine whether or not the set $\{(1,2,0), (1,2,1), (3,4,3)\}$ spans \mathbb{R}^3 (6)
- (c) Determine whether or not the set $\{(1, -1, 1), (2, 0, 1), (7, -3, 5)\}$ is linearly independent in \mathbb{R}^3 (5)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

(a) Use Gaussian elimination to solve the following system

$$\begin{array}{rcl} x - 2y + z - 4w &=& 1 \\ x + 3y + 7z + 2w &=& 2 \\ x - 12y - 11z - 16w &=& -1 \end{array}$$

(b) Use the augmented matrix [A:I] to find A^{-1} where $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$ (4)

(c) Use (b) to solve
$$A \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}$$
 (4)

1

(d) Use (b) to write A^{-1} and A as a product of elementary matrices

(4)

4

(9)

QUESTION B4 [20 Marks]

- (a) State the Cayley-Hamilton theorem (do not prove anything) (3)
- (b) Verify the Cayley-Hamilton theorem with $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$ (5)
- (c) Let B_1 and B_2 be finite subsets of a vector space V and let B_1 be a subset B_2 . Show that
 - (i) if B_1 is linearly dependent, B_2 is also linearly dependent.
 - (ii) if B_2 is linearly independent, B_2 is also linearly independet.

QUESTION B5 [20 Marks]

- (a) For the matrix $A = \begin{pmatrix} 5 & 6 \\ -2 & -2 \end{pmatrix}$ find its eigenvalues and the corresponding eigenvectors. (10)
- (b) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be T(x, y) = (x 2y, 2x + y, x + y) Find the matrix of T with respect to B_1 and B_2 where $B_1 = \{(1, -1), (0, 1)\}$ $B_2 = \{(1, 1, 0), (0, 1, 1), (1, -1, 1)\}$ (10)

QUESTION B6 [20 Marks]

- (a) Evaluate the following determinant by expanding along the second row
- (b) Find the co-ordinate vector of u = (4, 0, -2) relative to the basis $B = \{(1, 0, 0), (1, 1, 0), (1, 1, 1)\}$ (5)
- (c) Consider the linear system

$$x - 2y + 3z = 1$$

$$2x + ky + 6z = 6$$

$$x + 3y + (k - 3)z = 0$$

Find values of k for which the linear system has

- (i) a unique solution
- (ii) no solution
- (iii) infinitely many solutions

(10)

50

QUESTION B7 [20 Marks]

(a) Find the co-ordinate vector of $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ with respect to the basis

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\}$$
(8)

(b) Prove that if a homogeneous system of linear equations has more unknowns than the number of equations than it has a non-trivial solution. (12)

END OF EXAMINATION PAPER

3

ŧ