B.Sc. II, BASS II, BED. II

Title of Paper : Linear Algebra
Course Number : M220
Time Allowed : Three (3) Hours
Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

This examination paper should not be opened until permission has been GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1. (a) Define a vector space
(b) Define a linear transformation
(c) Which of the following are linear transformations?
(i) $T: p_{2}(x) \rightarrow p_{1}(x) ; \quad T\left(a x^{2}+b x+c\right)=2 a x+b$
(ii) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; T(x, y, z)=(x+1,2 y, z)$
(d) Show that $(12,12,-3)$ is linear combination of the vectors $(2,0,1),(4,2,0),(1,3,-1)$

A2. (a) Let $s=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a set of vectors in a vector space V. Explain precisely what is meant by each of the following statements.
(i) s spans V
(ii) s is a basis for V
(iii) s is linearly independent.
(b) Determine whether or not the set $\{(1,2,0),(1,2,1),(3,4,3)\}$ spans \mathbb{R}^{3}
(c) Determine whether or not the set $\{(1,-1,1),(2,0,1),(7,-3,5)\}$ is linearly independent in \mathbb{R}^{3}

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

(a) Use Gaussian elimination to solve the following system

$$
\begin{aligned}
x-2 y+z-4 w & =1 \\
x+3 y+7 z+2 w & =2 \\
x-12 y-11 z-16 w & =-1
\end{aligned}
$$

(b) Use the augmented matrix $[A: I]$ to find A^{-1} where $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2\end{array}\right)$
(c) Use (b) to solve $A \cdot\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 5\end{array}\right)$
(d) Use (b) to write A^{-1} and A as a product of elementary matrices

QUESTION B4 [20 Marks]

(a) State the Cayley-Hamilton theorem (do not prove anything)
(b) Verify the Cayley-Hamilton theorem with $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right)$
(c) Let B_{1} and B_{2} be finite subsets of a vector space V and let B_{1} be a subset B_{2}. Show that
(i) if B_{1} is linearly dependent, B_{2} is also linearly dependent.
(ii) if B_{2} is linearly independent, B_{2} is also linearly independet.

QUESTION B5 [20 Marks]

(a) For the matrix $A=\left(\begin{array}{cc}5 & 6 \\ -2 & -2\end{array}\right)$ find its eigenvalues and the corresponding eigenvectors.
(b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be $T(x, y)=(x-2 y, 2 x+y, x+y)$ Find the matrix of T with respect to B_{1} and B_{2} where $B_{1}=\{(1,-1),(0,1)\} \quad B_{2}=\{(1,1,0),(0,1,1),(1,-1,1)\}$

QUESTION B6 [20 Marks]

(a) Evaluate the following determinant by expanding along the second row
$\left|\begin{array}{ccc}3 & -2 & 1 \\ 2 & 1 & -3 \\ 1 & 2 & 2\end{array}\right|$
(b) Find the co-ordinate vector of $u=(4,0,-2)$ relative to the basis $B=\{(1,0,0),(1,1,0),(1,1,1)\}$
(c) Consider the linear system

$$
\begin{array}{r}
x-2 y+3 z=1 \\
2 x+k y+6 z=6 \\
-x+3 y+(k-3) z=0
\end{array}
$$

Find values of k for which the linear system has
(i) a unique solution
(ii) no solution
(iii) infinitely many solutions

QUESTION B7 [20 Marks]

(a) Find the co-ordinate vector of $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ with respect to the basis

$$
B=\left\{\left(\begin{array}{ll}
1 & 0 \tag{8}\\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)\right\}
$$

(b) Prove that if a homogeneous system of linear equations has more unknowns than the number of equations than it has a non-trivial solution.

