UNIVERSITY OF SWAZILAND

Supplementary Examination, 2013/2014

B.Sc. II, BASS II, BED. II

Title of Paper : Linear Algebra

Course Number : M220

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:

a. SECTION A (40 MARKS)

- Answer **ALL** questions in Section A.
- b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1. (a) (i) Give the definition of a basis of a vector space

(ii) Determine whether the vectors $u_1 = (1, 1, 1)$ $u_2 = (1, 2, 3)$ $u_3 = (2, -1, 1)$ form a basis for \mathbb{R}^3 (10)

(b) Let $S = \{v_1, v_2, \dots, v_n\}$ be a set of non-zero vectors in a vector space V. Prove that S is linearly dependent if and only if one of the vectors v_j is linear combination of the proceeding vectors in S. (10)

A2. (a) (i) State the Cayley-Hamilton Theorem

(ii) Illustrate the validity of the Cayley-Hamilton Theorem using the matrix

 $A = \left[\begin{array}{cc} 1 & 1 \\ 3 & -2 \end{array} \right]$

(b) Prove that if a homogeneous system has more unknowns than the number of equations then it always has a non-trivial solution. (8)

(c) By inspection, find the inverses of the following elementary matrices

(i)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$
 (4)
(ii) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ (4)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

B3. (a) Determine whether the following homogeneous system has non-trivial solutions $x_1 - 2x_2 + 3x_3 - x_4 = 0$ $3x_1 + x_2 - x_3 + 2x_4 = 0$

$$3x_1 + x_2 - x_3 + 2x_4 = 0$$

$$2x_2 - x_1 + 2x_3 + 2x_4 = 0$$

(b) Evaluate the determinant using cofactor expansion along the second row

$$\begin{vmatrix} 3 & -2 & 1 \\ 2 & 1 & -3 \\ 1 & 2 & 2 \end{vmatrix}$$
(4)

(c) (i) Find the inverse of the matrix A using the Gaussian elimination algorithm on $[A: I_4]$, and then use A^{-1} to solve the system $A \cdot X = B$ where

A =	1	0	0	1	, -	v	x_1	. <i>B</i> =	1	ŀ
	0	0	2	0			x_2		2	
	2	1	5	-3		л =	x_3		3	
	0	$^{-1}$	3	0			x_4		4	

(ii) Find a finite sequence of elementary matrices E_1, E_2, \cdots, E_k such that $E_k \cdot E_{k-1} \cdots E_1 \cdot A = I_4$ (13)

53

(8)

(3)

QUESTION B4 [20 Marks]

B4. Lt
$$B = \{u_1, u_2, u_3\}$$
 and $B^1 = \{v_1, v_2, v_3\}$ bases in \mathbb{R}^3 , where
 $u_1 = (1, 0, 0)^T$ $y_2 = (1, 1, 0)^T$ $y_3 = (1, 1, 1)^T$
 $v_1 = (0, 2, 1)^T$ $v_2 = (1, 0, 2)^T$ $v_3(1, -1, 0)^T$
(a) Find the transition matrix from B^1 to B (7)
(b) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation whose matrix with respect to the
basis B is
 $[T]_B = \begin{bmatrix} 3^-6 & 9 \\ 0 & 3 & -6 \\ 0 & 0 & 3 \end{bmatrix}$
Find the matrix of T w.r. to B^1 (8)
(c) Let $u \in \mathbb{R}^3$ be the vector whose coordinates relative to B are
 $[u]_B = \begin{bmatrix} 6 \\ -3 \\ 3 \end{bmatrix}$.

Find the coordinates of u relative to B^1

QUESTION B5 [20 Marks]

B5. (a) Solve the following system of linear equations

$\mathbf{x}_1 - 2x_2 + 3x_3 - 4x_4 = 1$	
$2x_1 + 5x_2 - 8x_3 + 6x_4 = 4$	
$x_1 - 4x_2 - 7x_3 + 2x_4 = 8$	(8)
(b) For which k does the following system have nontrivial solutions	
$kx_1 + 2x_2 - x_3 = 0$	4
$(k+1)x_1 + kx_2 + 0x_3 = 0$	*
$-x_1 + kx_2 + kx_3 = 0$	(8)
(c) Determine whether the given vectors are linearly independent	

$$u_1 = (2, 4, 0, 4, 3)^T$$
 $u_2(1, 2, -1, 3, 1)^T$ $u_3 = (-1, -2, 5, -7, 1)^T$

54

(5)

(4)

QUESTION B6 [20 Marks]

$$2x + 3y - z = 13x + 5y + 2z = 8x - 2y - 3z = -1$$
(7)

(b) Compute det(A) and, if A is invetible, firm $det(A^{-1})$, where

$$A = \begin{bmatrix} 2 & 1 & 3 & 2 \\ 3 & 0 & 1 & -2 \\ 1 & -1 & 4 & 3 \\ 272 & -1 & 1 \end{bmatrix}$$
(6)
(c) Let $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 4 \\ 1 & 5 & 7 \end{bmatrix}$

Use the adjoint of A to find A^{-1}

QUESTION B7 [20 Marks]

B7. (a) Let
$$T : \mathbb{R}^2 \to \mathbb{R}^3$$
 be given by

$$T\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}x-2y\\2x+2y\\x+y\end{array}\right)$$

Find the matrix of ${\cal T}$

(i) with respect to the standard basis

(ii) with respect to B^1 and B where

$$B^{1} = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{ and}$$

$$B = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\}$$
(10)
(b) Let V be all ordered pairs of real numbers. Define addition and scale multiplica-

(b) Let V be all ordered pairs of real numbers. Define addition and scale multiplication as follows

 $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2 + 1, y_1 + y_2 + 1)$ and $\alpha(x_1, y_1) = (\alpha x_1 + \alpha - 1, \alpha y_1 + \alpha - 1)$ show that V is vector space

END OF EXAMINATION PAPER

55

(10)

(7) (5)