UnIVERSITY OF SWAZILAND 52
SUPPLEMENTARY EXAMINATION, 2013/2014

B.Sc. II, BASS II, BED. II

Title of Paper : Linear Algebra
Course Number : M220
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

A1. (a) (i) Give the definition of a basis of a vector space
(ii) Determine whether the vectors $u_{1}=(1,1,1) u_{2}=(1,2,3) \quad u_{3}=(2,-1,1)$ form a basis for \mathbb{R}^{3}
(b) Let $S=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a set of non-zero vectors in a vector space V. Prove that S is linearly dependent if and only if one of the vectors v_{j} is linear combination of the proceeding vectors in S.

A2. (a) (i) State the Cayley-Hamilton Theorem
(ii) Illustrate the validity of the Cayley-Hamilton Theorem using the matrix
$A=\left[\begin{array}{cc}1 & 1 \\ 3 & -2\end{array}\right]$
(b) Prove that if a homogeneous system has more unknowns than the number of equations then it always has a non-trivial solution.
(c) By inspection, find the inverses of the following elementary matrces
(i) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3\end{array}\right)$
(ii) $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

B3. (a) Determine whether the following homogeneous system has non-trivial solutions
$\mathrm{x}_{1}-2 x_{2}+3 x_{3}-x_{4}=0$
$3 x_{1}+x_{2}-x_{3}+2 x_{4}=0$
$2 x_{2}-x_{1}+2 x_{3}+2 x_{4}=0$
(b) Evaluate the determinant using cofactor expansion along the second row
$\left|\begin{array}{ccc}3 & -2 & 1 \\ 2 & 1 & -3 \\ 1 & 2 & 2\end{array}\right|$
(c) (i) Find the inverse of the matrix A using the Gaussian elimination algorithm on $\left[A: I_{4}\right]$, and then use A^{-1} to solve the system $A \cdot X=B$ where

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 0 & 2 & 0 \\
2 & 1 & 5 & -3 \\
0 & -1 & 3 & 0
\end{array}\right], \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] . B=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

(ii) Find a finite sequence of elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that E_{k}. $E_{k-1} \cdots E_{1} \cdot A=I_{4}$

B4. Lt $B=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $B^{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$ bases in \mathbb{R}^{3}, where
$u_{1}=(1,0,0)^{T} \quad y_{2}=(1,1,0)^{T} \quad y_{3}=(1,1,1)^{T}$
$v_{1}=(0,2,1)^{T} \quad v_{2}=(1,0,2)^{T} \quad v_{3}(1,-1,0)^{T}$
(a) Find the transition matrix from B^{1} to B
(b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation whose matrix with respect to the basis B is
$[T]_{B}=\left[\begin{array}{ccc}3-6 & 9 & \\ 0 & 3 & -6 \\ 0 & 0 & 3\end{array}\right]$
Find the matrix of T w.r. to B^{1}
(c) Let $u \in \mathbb{R}^{3}$ be the vector whose coordinates relative to B are
$[u]_{B}=\left[\begin{array}{c}6 \\ -3 \\ 3\end{array}\right]$.
Find the coordinates of u relative to B^{1}

QUESTION B5 [20 Marks]

B5. (a) Solve the following system of linear equations
$\mathbf{x}_{1}-2 x_{2}+3 x_{3}-4 x_{4}=1$
$2 x_{1}+5 x_{2}-8 x_{3}+6 x_{4}=4$
$x_{1}-4 x_{2}-7 x_{3}+2 x_{4}=8$
(b) For which k does the following system have nontrivial solutions

$$
\mathrm{kx}_{1}+2 x_{2}-x_{3}=0
$$

$(k+1) x_{1}+k x_{2}+0 x_{3}=0$
$-x_{1}+k x_{2}+k x_{3}=0$
(c) Determine whether the given vectors are linearly independent

$$
\begin{equation*}
u_{1}=(2,4,0,4,3)^{T} \quad u_{2}(1,2,-1,3,1)^{T} \quad u_{3}=(-1,-2,5,-7,1)^{T} \tag{4}
\end{equation*}
$$

B6. (a) Use Cramer's rule to solve the following system
$2 x+3 y-z=1$
$3 x+5 y+2 z=8$
$x-2 y-3 z=-1$
(b) Compute $\operatorname{det}(A)$ and, if A is invetible, firn $\operatorname{det}\left(A^{-1}\right)$, where
$A=\left[\begin{array}{cccc}2 & 1 & 3 & 2 \\ 3 & 0 & 1 & -2 \\ 1 & -1 & 4 & 3 \\ 272 & -1 & 1 & \end{array}\right]$
(c) Let $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 4 \\ 1 & 5 & 7\end{array}\right]$

Use the adjoint of A to find A^{-1}

QUESTION B7 [20 Marks]

B7. (a) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by
$T\binom{x}{y}=\left(\begin{array}{c}x-2 y \\ 2 x+2 y \\ x+y\end{array}\right)$
Find the matrix of T
(i) with respect to the standard basis
(ii) with respect to B^{1} and B where
$B^{1}=\left\{\binom{1}{-1},\binom{0}{1}\right\}$ and
$B=\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)\right\}$
(b) Let V be all ordered pairs of real numbers. Define addition and scale multiplication as follows

$$
\begin{align*}
& \left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}+1, y_{1}+y_{2}+1\right) \text { and } \\
& \alpha\left(x_{1}, y_{1}\right)=\left(\alpha x_{1}+\alpha-1, \alpha y_{1}+\alpha-1\right) \\
& \text { show that } V \text { is vector space } \tag{10}
\end{align*}
$$

