UNIVERSITY OF SWAZILAND 68

FINAL EXAMINATIONS 2013/2014

B.Sc. / B.Ed. / B.A.S.S. II

TITLE OF PAPER	$:$	DYNAMICS I
COURSE NUMBER	$:$	M255
TIME ALLOWED	$:$	THREE (3) HOURS
INSTRUCTIONS		1. THIS PAPER CONSISTS OF
		2. ANSWER ALL QUESTIONS IN
		3. ANSWER ANY THREE QUESTIONS
		SECTION A.
		IN SECTION B.

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Determine whether or not the points $(0,-2,-5),(3,4,4)$ and $(2,2,1)$ lie on a straight line.
(b) Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and half its length.
(c) A child pulls a wagon along level ground in straight line by exerting a force of 30 lbs on a handle that makes an angle of 30 deg with the horizontal. Find the work done in pulling the wagon 80 ft .
(d) Find the two unit vectors that are perpendicular to the plane containing the points $P(3,-6,4), Q(2,1,1)$, and $R(5,0,-2)$.

QUESTION 2

(a) Given the function $\phi=\phi(x, y, z)=2 x^{2}+3 y^{2}+z^{2}$, which has continuous first partial derivatives, find $\nabla \phi$.
(b) Let $\nabla \phi=2 x y \hat{\mathbf{i}}+\left(x^{2}+2 y z\right) \hat{\mathbf{j}}+\left(y^{2}+1\right) \hat{\mathbf{k}}$. Find $\phi=\phi(x, y, z)$ if $\phi(1,-2,2)=4$.[8]
(c) For each of the following surfaces, find unit vectors that are normal to the surface at the given point:
(i) $x^{2}+y^{2}+z^{2}=9$, at $P(0,3,0)$;
(ii) $a x+b y+c z=d$, at any point $P(x, y, z)$;
(iii) $3 x-6 y-2 z=15$, at $P\left(10,0, \frac{15}{2}\right)$.

SECTION B

QUESTION 3

(a) In cylindrical coordinates (s, θ, z), the position vector of an arbitrary point (x, y, z) is given by

$$
\mathbf{r}(s, \theta, z)=s \cos \theta \hat{\mathbf{i}}+s \sin \theta \hat{\mathbf{j}}+z \hat{\mathbf{k}}
$$

Find:
(i) \hat{s};
(ii) $\hat{\theta}$; [2]
(iii) \hat{z};
(iv) the velocity vector \mathbf{v};
(v) $\dot{\hat{s}}$; [2]
(vi) $\dot{\hat{\theta}}$;
(vii) $\dot{\hat{z}}$; and
(viii) the acceleration vector
for any particle moving in this coordinate system.
(b) Prove that if \mathbf{v} is any vector of constant length, then \mathbf{v} and $\frac{d \mathbf{v}}{\mathrm{~d} t}$ are orthogonal.
(c) If $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$, prove that $\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$. \quad [2]

If

$$
\mathbf{r}(s)=a \cos \left(\frac{s}{\omega}\right) \mathbf{i}+a \sin \left(\frac{s}{\omega}\right) \mathbf{j}+b \frac{s}{\omega} \hat{\mathbf{k}}
$$

where s denotes arc length and a, b and ω are constants, find:
(a) the unit tangent vector $\hat{\mathbf{T}}$;
(b) the curvature κ;
(c) the unit principal normal $\hat{\mathbf{N}}$; [3]
(d) the unit binormal vector $\hat{\mathbf{B}}$.

QUESTION 5

(a) An inductor of 2 henries, a resistor of 4 ohms, and a capacitor of 0.05 farads are connected in series with a battery of $E=100$ volts. At $t \leq 0$ the charge on the capacitor and the current in the circuit are zero. Find the charge and current at any time $t>0$.
(b) Solve the problem in (a) if now the battery is of e.m.f. $E=100 \sin (4 t)$.
(a) A train takes time T to perform a journey. It travels for time $\frac{T}{n}$ with uniform acceleration, then for time $(n-2) \frac{T}{n}$ with uniform speed V, and finally for time $\frac{T}{n}$ with constant retardation. Prove that its average speed is

$$
(n-1) \frac{V}{n} .
$$

If the length of this journey is 64 km , the time taken on the whole journey is 60 minutes, and the uniform speed is $96 \mathrm{~km} / \mathrm{h}$, find the time which is occupied in traveling with the uniform speed.
(b) Particle A, initially at rest, is projected from the origin with acceleration $\frac{\sqrt{3}}{2} \hat{\mathbf{i}}+\frac{1}{2} \hat{\mathbf{j}}$. Particle B, at rest at the point $(\sqrt{3}, 0)$, is projected at the same instant with acceleration $\frac{1}{2} \hat{\mathbf{j}}$. Show that the particles collide and that the time of collision is $t=2$.
(c) A particle moving in a straight line is acted upon by a retarding force of $k v^{3}$ per unit mass, where k is a constant and v is the speed. Show that after traveling a distance x, the speed and time taken are given by

$$
v=\frac{u}{1+k u x} \quad \text { and } \quad t=\frac{1}{2} k x^{2}+\frac{x}{u},
$$

where u is the initial speed.
(a) Particles P and Q of mass $20 g$ and $40 g$, respectively, are simultaneously projected from points A and B on a horizontal ground. The initial velocity, $v_{0 P}$, of P makes an angle of 45° with the horizontal $A B$, and the initial velocity, $\mathrm{v}_{0 Q}$, of Q makes an angle of 135° with the horizontal $A B$. Each particle has initial speed $49 \mathrm{~m} / \mathrm{s}$, and the separation $A B$ is 245 m long. Both particles are assumed to travel in the same vertical plane and assumed to collide after time T. After collision, P retraces its path whilst Q falls vertically to the ground.
(i) Determine the position of Q when it hits the ground.
(ii) How much time after collision does the particle Q take to reach the ground? Take $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(b) A particle of unit mass moves subject to a central force. Determine the law of force if the path followed by the particle is a circular orbit through the origin.[9]

