UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2013/2014

B.Sc. / B.Ed. / B.A.S.S. II

TITLE OF PAPER	:	DYNAMICS I
COURSE NUMBER	:	M255
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWER <u>ALL</u> QUESTIONS IN SECTION A. ANSWER ANY <u>THREE</u> QUESTIONS IN SECTION B.
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

.

SECTION A

QUESTION 1

- (a) Determine whether or not the points (0, -2, -5), (3, 4, 4) and (2, 2, 1) lie on a straight line.
- (b) Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and half its length. [7]
- (c) A child pulls a wagon along level ground in straight line by exerting a force of 30 lbs on a handle that makes an angle of 30 deg with the horizontal. Find the work done in pulling the wagon 80 ft.
- (d) Find the two unit vectors that are perpendicular to the plane containing the points P(3, -6, 4), Q(2, 1, 1), and R(5, 0, -2).

QUESTION 2

(a) Given the function φ = φ(x, y, z) = 2x² + 3y² + z², which has continuous first partial derivatives, find ∇φ.

(b) Let
$$\nabla \phi = 2xy \,\hat{\mathbf{i}} + (x^2 + 2yz) \,\hat{\mathbf{j}} + (y^2 + 1) \,\hat{\mathbf{k}}$$
. Find $\phi = \phi(x, y, z)$ if $\phi(1, -2, 2) = 4.[8]$

(c) For each of the following surfaces, find unit vectors that are normal to the surface at the given point:

(i)
$$x^2 + y^2 + z^2 = 9$$
, at $P(0,3,0)$; [5]

(ii) ax + by + cz = d, at any point P(x, y, z); [3]

(iii)
$$3x - 6y - 2z = 15$$
, at $P\left(10, 0, \frac{15}{2}\right)$. [2]

SECTION B

QUESTION 3

(a) In cylindrical coordinates (s, θ, z) , the position vector of an arbitrary point (x, y, z) is given by

$$\mathbf{r}(s,\theta,z) = s\cos\theta \hat{\mathbf{i}} + s\sin\theta \hat{\mathbf{j}} + z\hat{\mathbf{k}}.$$

Find:

(i)	$\hat{s};$	[2]
(ii)	$\hat{ heta};$	[2]
(iii)	$\hat{z};$	[2]
(iv)	the velocity vector \mathbf{v} ;	[2]
(v)	ŝ;	[2]
(vi)	$\dot{ heta};$	[2]
(vii)	$\dot{\hat{z}};$ and	[1]
(viii)	the acceleration vector	[2]
	for any particle moving in this coordinate system.	
(b) Prov	ve that if \mathbf{v} is any vector of constant length, then \mathbf{v} and $\frac{2}{3}$	$\frac{d\mathbf{v}}{dt}$ are

- orthogonal. [3]
- (c) If $\mathbf{a} = (a_1, a_2, a_3)$ and $\mathbf{b} = (b_1, b_2, b_3)$, prove that $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$. [2]

QUESTION 4

If

$$\mathbf{r}(s) = a \cos\left(\frac{s}{\omega}\right) \mathbf{i} + a \sin\left(\frac{s}{\omega}\right) \mathbf{j} + b \frac{s}{\omega} \mathbf{\hat{k}}$$

where s denotes arc length and a, b and ω are constants, find:

(a) the unit tangent vector $\hat{\mathbf{T}}$;	[7]
(b) the curvature κ ;	[4]
(c) the unit principal normal $\mathbf{\hat{N}}$;	[3]
(d) the unit binormal vector $\hat{\mathbf{B}}$.	[6]

QUESTION 5

- (a) An inductor of 2 henries, a resistor of 4 ohms, and a capacitor of 0.05 farads are connected in series with a battery of E = 100 volts. At t ≤ 0 the charge on the capacitor and the current in the circuit are zero. Find the charge and current at any time t > 0.
- (b) Solve the problem in (a) if now the battery is of e.m.f. $E = 100 \sin(4t)$. [12]

QUESTION 6

(a) A train takes time T to perform a journey. It travels for time $\frac{T}{n}$ with uniform acceleration, then for time $(n-2)\frac{T}{n}$ with uniform speed V, and finally for time $\frac{T}{n}$ with constant retardation. Prove that its average speed is

$$(n-1)\frac{V}{n}$$
.

If the length of this journey is 64 km, the time taken on the whole journey is 60 minutes, and the uniform speed is 96 km/h, find the time which is occupied in traveling with the uniform speed. [6]

- (b) Particle A, initially at rest, is projected from the origin with acceleration $\frac{\sqrt{3}}{2}\hat{\mathbf{i}} + \frac{1}{2}\hat{\mathbf{j}}$. Particle B, at rest at the point $(\sqrt{3}, 0)$, is projected at the same instant with acceleration $\frac{1}{2}\hat{\mathbf{j}}$. Show that the particles collide and that the time of collision is t = 2. [7]
- (c) A particle moving in a straight line is acted upon by a retarding force of kv^3 per unit mass, where k is a constant and v is the speed. Show that after traveling a distance x, the speed and time taken are given by

$$v=rac{u}{1+kux} \quad ext{and} \quad t=rac{1}{2}kx^2+rac{x}{u},$$

where u is the initial speed.

[7]

QUESTION 7

- (a) Particles P and Q of mass 20 g and 40 g, respectively, are simultaneously projected from points A and B on a horizontal ground. The initial velocity, \mathbf{v}_{0P} , of P makes an angle of 45° with the horizontal AB, and the initial velocity, \mathbf{v}_{0Q} , of Q makes an angle of 135° with the horizontal AB. Each particle has initial speed 49 m/s, and the separation AB is 245 m long. Both particles are assumed to travel in the same vertical plane and assumed to collide after time T. After collision, P retraces its path whilst Q falls vertically to the ground.
 - (i) Determine the position of Q when it hits the ground. [4]
 - (ii) How much time after collision does the particle Q take to reach the ground? Take $g = 9.8 m/s^2$. [7]
- (b) A particle of unit mass moves subject to a central force. Determine the law of force if the path followed by the particle is a circular orbit through the origin.[9]

END OF EXAMINATION