SUPPLEMENTARY EXAMINATIONS 2013/2014

B.Sc. / B.Ed. / B.A.S.S. II

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Prove that the diagonals of a parallelogram bisect each other.
(b) Decompose the vector $\mathbf{u}=2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ into vectors parallel and orthogonal to the vector $\mathbf{v}=-5 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$.
(c) Given the points $P(2,1,-1), Q(3,0,2), R(4,-2,1)$, and $S(5,-3,0)$. find the volume of the parallelepiped having adjacent sides $P Q, P R$, and $P S$. [4]

QUESTION 2

(a) Evaluate $\lim _{t \rightarrow \infty}\left(\mathrm{e}^{-t \hat{i}}+\frac{1}{t} \hat{\mathbf{j}}+\frac{t}{t^{2}-1} \hat{\mathbf{k}}\right)$.
(b) Let $\mathbf{F}(\mathrm{t})=\left(\mathrm{e}^{\mathrm{t}} \hat{\mathbf{i}}+\hat{\mathbf{j}}+\mathrm{t}^{2} \hat{\mathbf{k}}\right) \times\left(\mathrm{t}^{3} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\right)$. Find $\mathbf{F}^{\prime}(t)$.
(c) Prove that if $\mathbf{r}(t) \cdot \mathbf{r}(t)$ is a constant, then $\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0$.
(d) Given that $\mathbf{F}(x, y, z)=\mathrm{e}^{x y} \hat{\mathbf{i}}+(x-y) \hat{\mathbf{j}}+z y \sin y \hat{\mathbf{k}}$, find $\mathbf{F}_{x}, \mathbf{F}_{y}, \mathbf{F}_{z}, \mathbf{F}_{x} \times \mathbf{F}_{y}$, and $\mathbf{F}_{x} \cdot \mathbf{F}_{z}$.

SECTION B

$+5$

QUESTION 3

A parametrization of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ; \quad a, b>0
$$

traversed in the counterclockwise direction is given by $x=a \cos t, y=b \sin t ; 0 \leq t<$ ∞. Suppose that a particle moves along this ellipse in the counterclockwise direction. Find:
(a) the position vector r ; [1]
(b) the velocity vector \mathbf{v}; [1]
(c) the speed $|\mathbf{v}|$; [1]
(d) the acceleration vector a; [1]
(e) the magnitude of the acceleration $|\mathbf{a}|$; [1]
(f) the unit tangent vector $\hat{\mathbf{T}}$; [2]
(g) the principal unit normal vector $\hat{\mathbf{N}}$; [8]
(h) the curvature κ; [2]
(i) the unit binormal vector $\hat{\mathbf{B}}$; [3]of the particle at the point $P\left(\frac{a}{\sqrt{2}}, \frac{-b}{\sqrt{2}}\right)$.
(a) The force acting on a particle of mass m is given by $\mathbf{F}=a \cos (\omega t) \hat{\mathbf{i}}+b \sin (\omega t) \hat{\mathbf{j}}$. If the particle is initially at rest at the origin, prove that its position at any later time t is

$$
\begin{equation*}
\mathbf{r}=\frac{a}{m \omega^{2}}(1-\cos (\omega t)) \hat{\mathbf{i}}+\frac{b}{m \omega^{2}}(\omega t-\sin (\omega t)) \hat{\mathbf{j}} . \tag{6}
\end{equation*}
$$

(b) A lift ascends 400 meters in 2 minutes, traveling from rest to rest. It travels with uniform acceleration for the first 30 seconds; it travels with uniform retardation for the next 20 seconds; and it travels with uniform speed for the remainder of the time. Calculate:
(i) the uniform speed in meters per second; [4]
(ii) the uniform acceleration in meters per second squared; [5]
(iii) the time taken by the lift to ascend the first 200 meters.
(a) A particle moves on the x axis, attracted to the origin O by a force proportional to its distance from O. If the particle starts from rest at $x=5 \mathrm{~cm}$ and reaches $x=2.5 \mathrm{~cm}$ for the first time after 2 seconds, find:
(i) the position at any time t after it starts;
(ii) the magnitude of the velocity at $x=0$;
(iii) the amplitude, period, and frequency of the vibration; and
(iv) the acceleration.
(b) (i) A 7 kg weight suspended at the end of a vertical spring stretches it 5 cm . Assuming that a damping force numerically equal to 0.2 times the velocity is acting on the system, find the position of the weight at any time t if initially the weight is pulled down 10 cm and released.
(ii) Is the motion in (i) oscillatory, over-damped, or critically damped? [7,1]
(a) A particle is projected vertically upwards with initial speed u. Gravity acts, as does air resistance, which is given by $k v$ per unit mass, where k is a constant and v is the speed of the particle. Find the time taken to reach the maximum height.
(b) A particle is projected with velocity \mathbf{u} from a point O in a vertical plane through the line of greatest slope of a plane inclined at an angle β to the horizontal. After time T, the particle strikes the inclined plane at the point P, at a distance R from O. If \mathbf{u} makes an angle α with the horizontal, and if $|\mathbf{u}|=u$, show that:
(i) $T=\frac{2 u \sin (\alpha-\beta)}{g \cos \beta}$ and $R=\frac{u^{2}[\sin (2 \alpha-\beta)-\sin \beta]}{g \cos ^{2} \beta}$;
(ii) for constant u and β, R is maximum when $\alpha=\frac{\pi}{4}+\frac{\beta}{2}$.

QUESTION 7

(a) If $\mathbf{r}=\mathbf{r}(x, y, z)=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}, r=|\mathbf{r}|$, and $\mathbf{u}=\mathbf{u}(x, y, z)=,u_{1} \hat{\mathbf{i}}+u_{2} \hat{\mathbf{j}}+u_{3} \hat{\mathbf{k}}$ is any vector whose first partial derivatives exist, show that:
(i) $\nabla \cdot \mathrm{r}=3$;
(ii) $\nabla \times r=0$;
(iii) $\nabla \cdot(\nabla \times \mathbf{u})=0$;
(iv) $\nabla r=\frac{\mathbf{r}}{r}$.
(b) A particle of mass m moves in a central force field $\mathbf{F}=\frac{K}{r^{n}} \hat{\mathbf{r}}$ where K and n are constants. It starts from rest at $r=a$ and arrives at $r=0$ with finite speed v_{0}. Prove that

$$
\begin{equation*}
v_{0}=\left\{\frac{2 K a^{1-n}}{m(n-1)}\right\}^{1 / 2} \tag{8}
\end{equation*}
$$

END OF EXAMINATION
(a) A particle is projected vertically upwards with initial speed u. Gravity acts, as does air resistance, which is given by $k v$ per unit mass, where k is a constant and v is the speed of the particle. Find the time taken to reach the maximum height.
(b) A particle is projected with velocity u from a point O in a vertical plane through the line of greatest slope of a plane inclined at an angle β to the horizontal. After time T, the particle strikes the inclined plane at the point P, at a distance R from O. If \mathbf{u} makes an angle α with the horizontal, and if $|\mathbf{u}|=u$, show that:
(i) $T=\frac{2 u \sin (\alpha-\beta)}{g \cos \beta}$ and $R=\frac{u^{2}[\sin (2 \alpha-\beta)-\sin \beta]}{g \cos ^{2} \beta}$;
(ii) for constant u and β, R is maximum when $\alpha=\frac{\pi}{4}+\frac{\beta}{2}$.

QUESTION 7

(a) If $\mathbf{r}=\mathbf{r}(x, y, z)=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}, r=|\mathbf{r}|$, and $\mathbf{u}=\mathbf{u}(x, y, z)=,u_{1} \hat{\mathbf{i}}+u_{2} \hat{\mathbf{j}}+u_{3} \hat{\mathbf{k}}$ is any vector whose first partial derivatives exist, show that:
(i) $\nabla \cdot \mathrm{r}=3$;
(ii) $\nabla \times r=0$;
(iii) $\nabla \cdot(\nabla \times \mathrm{u})=0$; \quad [4]
(iv) $\nabla r=\frac{\mathbf{r}}{r}$.
(b) A particle of mass m moves in a central force field $\mathbf{F}=\frac{K}{r^{n}} \hat{\mathbf{r}}$ where K and n are constants. It starts from rest at $r=a$ and arrives at $r=0$ with finite speed v_{0}. Prove that

$$
\begin{equation*}
v_{0}=\left\{\frac{2 K a^{1-n}}{m(n-1)}\right\}^{1 / 2} \tag{8}
\end{equation*}
$$

