University of Swaziland

Final Examination, December 2013

B.A.S.S., B.Sc, B.Eng, B.Ed

Title of Paper : Numerical Analysis I
Course Code : M311
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

SECTION A: ANSWER ALL QUESTIONS

1.1. Convert the following binary numbers
(a) $(0.1111 \cdots)_{2}$, with n ones.
(b) $(0 . \overline{10})_{2}$.
to their decimal equivalent.
1.2. Given the function $f(x)=3-\sqrt{9-x}$
(a) Find a suitable $g(x)$ that has been reformulated to be algebraically equivalent to $f(x)$, with the aim of avoiding loss of significance error.
(b) Compare the results of calculating $f(0.0001)$ and $g(0.0001)$ with six digits and chopping.
1.3. Find the divided differences for the following data

$$
\begin{array}{c|c|c|c}
x_{i} & 1 & \frac{1}{2} & 3 \\
\hline f\left(x_{i}\right) & 3 & -10 & 2
\end{array}
$$

1.4. Determine the machine representation in single precision on a 32 bit word length computer for the decimal number - 285.75
1.5. Complete the following table

i	x_{i}	$P_{i}(0.5)$	$P_{i, i+1}(0.5)$	$P_{i, i+i, i+2}(0.5)$
0	0	0		
			3.5	
1	0.4	0.8		$\frac{27}{7}$
			$?$	
2	0.7	$?$		

1.6. Given a continuous function $f(x)$ with a root x^{*} in $[a, b]$
(a) Give the algorithm for the bisection method to estimate the root to within an error ε
[6]
(b) Using the algorithm in part 1.6(a) solve the equation x^{2}. 7. Perform 4 iterations given $a=2.5$ and $b=3$
[5]
2. Let $f(x)=x^{3}+x+1, a=-1, \quad b=1$ and $x_{0}=0$.
(a) Show that the iterations generated by Newton's method for solving $f(x)=$ 0 converges on $[a, b]$.
(b) Show that the Newton's iterative formula for solving $f(x)=0$ is given by

$$
\begin{equation*}
x_{n+1}=\frac{2 x_{n}^{3}-1}{3 x_{n}^{2}+1} . \tag{3}
\end{equation*}
$$

(c) Perform 3 iterations of Newton's method.
(d) List all the floating point numbers that can be expressed in the form

$$
x= \pm\left(0 . b_{1} b_{2}\right) \times 2^{k}, \quad k, b_{1}, b_{2} \in\{0,1\} .
$$

3. Given the following 3 points

$$
\begin{array}{c|c|c|c}
x_{i} & 0 & 3 & 5 \tag{8}\\
\hline f\left(x_{i}\right) & 1 & 6 & 7
\end{array}
$$

(a) Find the Lagrange interpolating polynomial $P_{2}(x)$.
(b) Use $P_{2}(x)$ to approximate $f^{\prime}(1)$.
(c) Find the it sife required to evaluate the integral

$$
\begin{equation*}
\int_{0}^{2} \ln (1+x) d x \tag{6}
\end{equation*}
$$

by the composite Trapezoidal rule with accuracy $\varepsilon=5 \times 10^{-9}$.

$$
\int_{-1}^{1} f(x) d x \approx f\left(-\frac{\sqrt{3}}{3}\right)+f\left(\frac{\sqrt{3}}{3}\right)
$$

to approximate the integral

$$
\int_{0}^{1} x^{2} e^{-x} d x
$$

(b) Use Neville's iterative scheme to find the interpolating polynomial for the following data

$$
\begin{array}{c|c|c|c}
x_{i} & 1 & 2 & 3 \\
\hline f\left(x_{i}\right) & 3 & -10 & 2
\end{array}
$$

Hence approximate $f(2.5)$.
6. (a) Find the Newton form of the interpolation for the following data

$$
\begin{array}{c|c|c|c|c}
x & 1 & 3 & 4 & 6 \tag{8}\\
\hline f(x) & -3 & 13 & 21 & 1
\end{array}
$$

(b) Determine the interval width h so that the Simpson's rule can used to evaluate the integral

$$
\begin{equation*}
\int_{0}^{2} x e^{-x} d x \tag{4}
\end{equation*}
$$

with an accuracy of 5×10^{-6}.
(c) Solve the quadratic equation

$$
x^{2}+62 \cdot 10 x+1=0
$$

as accurately as possible using 6 digits and rounding.

