University of Swaziland

Supplementary Examination, July 2014

B.A.S.S. , B.Sc, B.Eng, B.Ed

Title of Paper : Numerical Analysis I
Course Code : M311
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): $\mathbf{4 0}$ MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given by THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

1.1. Convert the following binary numbers
(a) $(1111 \cdots)_{2}$, with n ones.
(b) $(1 . \overline{10})_{2}$.
to their decimal equivalent.
1.2. Given the function $f(x)=x(\sqrt{x+1}-\sqrt{x}$
(a) Find a suitable $g(x)$ that has been reformulated to be algebraically equivalent to $f(x)$, with the aim of avoiding loss of significance error.
(b) Compare the results of calculating $f(1000)$ and $g(1000)$ with six digits and chopping.
1.3. Find the divided differences for the following data

x_{i}	1	$\frac{3}{2}$	0	2
$f\left(x_{i}\right)$	3	$\frac{13}{4}$	3	$\frac{5}{3}$

1.4. Determine the machine representation in single precision on a 32 bit word length computer for the decimal number 84.375
1.5. Complete the following table

i	x_{i}	$f\left[x_{i}\right]$	$f\left[x_{i}, x_{i+1}\right]$	$f\left[x_{i}, x_{i+1}, x_{i+2}\right]$.
0	0	$?$		
			$?$	
1	0.4	$?$		$\frac{50}{7}$
			10	
2	0.7	6		

1.6. Given a continuous function $f(x)$ with a root x^{*} in $[a, b]$
(a) Give the algorithm for the bisection method to estimate the root to within an error ε
(b) Using the algorithm in part 1.6(a) to find $\sqrt{10}$. Perform 3 iterations given $a=3$ and $b=3.5$

SECTION B: ANSWER ANY 3 QUESTIONS

2. Let $f(x)=x^{3}-2, a=1, \quad b=2$ and $x_{0}=1$.
(a) Show that the iterations generated by Newton's method for solving $f(x)=$ 0 converges on $[a, b]$.
(b) Show that the Newton's iterative formula for solving $f(x)=0$ is given by

$$
\begin{equation*}
x_{n+1}=\frac{2\left(x_{n}^{3}+1\right)}{3 x_{n}^{2}} \tag{3}
\end{equation*}
$$

(c) Perform 3 iterations of Newton's method.
(d) List all the floating point numbers that can be expressed in the form

$$
\begin{equation*}
x=\left(0.1 b_{1} b_{2} b_{3}\right), \quad b_{1}, b_{2}, b_{3} \in\{0,1\} . \tag{8}
\end{equation*}
$$

3. Given the following 3 points

$$
\begin{array}{c|c|c|c}
x_{i} & -1 & 1 & 5 \tag{8}\\
\hline f\left(x_{i}\right) & 3 & -2 & 4
\end{array}
$$

(a) Find the Lagrange interpolating polynomial $P_{2}(x)$.
(b) Use $P_{2}(x)$ to approximate $f^{\prime}(1)$.
(c) Construct a quadrature rule by using the Lagrange interpolating polynomials on the interval $[0,4]$ using the nodes $0,2,3$.
4. (a) Using the $L U$ factorization (use gaussian elimination), find the parabola $y=A+B x+C x^{2}$ that passes through the points $(1,6),(2,5)$ and $(3,2)$. [14]
(b) Consider the linear system

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =6 \\
2 x_{1}-4 x_{2}+6 x_{3} & =4 \\
3 x_{1}-9 x_{2}-3 x_{3} & =-9
\end{aligned}
$$

perform 2 iterations of the Gauss Seidel method with

$$
\underline{x}^{(0)}=\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)
$$

5. (a) Use Neville's iterative scheme to find the interpolating polynomial for the following data

$$
\begin{array}{c|c|c|c}
x_{i} & 1 & 3 & 4 \\
\hline f\left(x_{i}\right) & -3 & 13 & 21
\end{array}
$$

Hence approximate $f(2.5)$.
(b) Use the two point Gaussian quadrature rule

$$
\int_{-1}^{1} f(x) d x \approx f\left(-\frac{\sqrt{3}}{3}\right)+f\left(\frac{\sqrt{3}}{3}\right)
$$

to approximate the integral

$$
\int_{0}^{2} x e^{-x} d x
$$

6. (a) Find the Newton form of the interpolation for the following data

$$
\begin{array}{c|c|c|c|c}
x & -1 & 1 & 5 & -3 \\
\hline f(x) & 3 & 3 & -2 & 4
\end{array}
$$

(b) Solve the quadratic equation

$$
\begin{equation*}
x^{2}-102.4 x+1=0 \tag{8}
\end{equation*}
$$

as accurately as possible using 6 digits and rounding.
END

