UNIVERSITY OF SWAZILAND
 SUPPLEMENTARY EXAMINATIONS 2013/2014

 93B.Sc. / B.Ed. / B.A.S.S. / B.EENG. III

TITLE OF PAPER	:	VECTOR ANALYSIS
COURSE NUMBER	:	M312
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF SEVEN QUESTIONS. 2. ANSWER ALL QUESTIONS IN SECTION A. 3. ANSWER ANY THREE QUESTIONS IN SECTION B.
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

SECTION A

QUESTION 1

(a) (i) The graph $y=f(x)$ in the $x y$-plane automatically has the parametrization $x=x, y=f(x)$, and the vector formula $\mathbf{r}(x)=x \hat{\mathbf{i}}+(f(x)) \hat{\mathbf{j}}$. Use this formula to show that if f is a twice differentiable function of x, then

$$
\begin{equation*}
\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+\left(f^{\prime}(x)\right)^{2}\right]^{3 / 2}} \tag{7}
\end{equation*}
$$

(ii) Use the formula for κ in (i) to find the curvature of $y=\ln (\cos x), \quad-\pi / 2 \leq$ $x \leq \pi / 2$.
(b) Let \mathbf{u} and \mathbf{v} be vectors in space. Prove the Pythagorean Principle,

$$
|\mathbf{u}+\mathbf{v}|^{2}=|\mathbf{u}|^{2}+|\mathbf{v}|^{2} \Longleftrightarrow \mathbf{u} \cdot \mathbf{v}=0 .
$$

(c) Find parametric equations for the tangent line to the curve $C_{3}: x=-t-8, \quad y=t^{2}-3, \quad z=2 t-5 ; \quad-\infty<t<\infty$, at the point $(-9,-2,-3)$.
(a) A path of a roller coaster ride (superimposed on a rectangular coordinate system) consists of part of the parabola $y=x^{2} / 2$ for $x \leq 0$, followed by a circular loop for $x \geq 0$. Find the equation of this loop if the track is continuous, smooth, and has continuous curvature.
(b) Let $\mathbf{F}=\left(6 x y+z^{3}\right) \hat{\mathbf{i}}+\left(3 x^{2}-z\right) \hat{\mathbf{j}}+\left(3 x z^{2}-y\right) \hat{\mathbf{k}}$ be a vector field.
(i) Show that \mathbf{F} is irrotational. [3]
(ii) Find div curl F.
(c) Let $\mathbf{u}(x, y, z)=y \hat{\mathbf{i}}-x \hat{\mathbf{j}}$ and $\mathbf{v}(x, y, z)=\frac{\mathbf{u}}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}}$ be vectors in space. Find the flow lines of \mathbf{u} and \mathbf{v}.

QUESTION 3

(a) Find the principal unit normal vector and the outward unit normal vector to the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ; \quad a, b>0
$$

traversed in the clockwise direction, at the point point $P\left(\frac{a}{\sqrt{2}}, \frac{-b}{\sqrt{2}}\right)$. Also, find the curvature, κ, and the radius of curvature, ρ, at the given point.
(b) Find parametric equations for the line of intersection of the planes $3 x-6 y-2 z=$ 15 and $2 x+y+-2=5$.

QUESTION 4

(a) Derive the following alternative formula for the curvature function $\kappa=\kappa(t)$ of a smooth curve:

$$
\kappa=\frac{|\mathbf{a} \times \mathbf{v}|}{|\mathbf{v}|^{3}} .
$$

(b) Let $\mathbf{r}(t)=6 \cos t \hat{\mathbf{i}}+6 \sin t \hat{\mathbf{j}}+2 t \hat{\mathbf{k}}$. Find the following:

$$
\begin{equation*}
\text { (i) } \mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t) \text {; } \tag{2}
\end{equation*}
$$

(ii) $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$.
[3]
(c) Evaluate $\lim _{t \rightarrow 1}\left(\frac{1}{\hat{i}} \hat{\mathbf{i}}+\frac{\ln t}{t^{2}-1} \hat{\mathbf{j}}+\frac{t-1}{t^{2}-1} \hat{\mathbf{k}}\right)$.
(d) Prove the Cauchy-Schwarz Inequality; $|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|$, where \mathbf{u} and \mathbf{v} are vectors in space.
(e) Is the line $x=1-2 t, \quad y=2+5 t, \quad z=-3 t$ parallel to the plane $2 x+y-z=8$? Give reasons for your answer.
(a) Let D be the region in the $x y z$-space defined by the inequalities

$$
1 \leq x \leq 2, \quad 0 \leq x y \leq 2, \quad 0 \leq z \leq 1
$$

Evaluate

$$
\iiint_{D}\left(x^{2} y+3 x y z\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

by applying the transformation

$$
u=x, \quad v=x y, \quad w=3 z
$$

and integrating over the appropriate region G in the $u v w$-space.
(b) Find out which of the fields given below are conservative. For conservative fields, find a potential function.
(i) $\mathbf{F}=y \hat{\mathbf{i}}-x \hat{\mathbf{j}}$.
(ii) $\mathbf{F}=\frac{x}{x^{2}+y^{2}+z^{2}} \hat{\mathbf{i}}+\frac{y}{x^{2}+y^{2}+z^{2}} \hat{\mathbf{j}}+\frac{z}{x^{2}+y^{2}+z^{2}} \hat{\mathbf{k}}$.

QUESTION 6

(a) By any method, find the integral of $H(x, y, z)=x^{2} z$ over the surface of the sphere $x^{2}+y^{2}+z^{2}=1 ; z \geq 0$
(b) Verify Green's theorem in the plane for

$$
\oint_{C}\left[\left(2 x y-x^{2}\right) \mathrm{d} x+\left(x+y^{2}\right) \mathrm{d} y\right]
$$

where C is the closed curve (described in the positive direction) of the region bounded by the curves $y=x^{2}$ and $y^{2}=x$.
(a) If $\mathbf{F}=y \hat{\mathbf{i}}+(x-2 x z) \hat{\mathbf{j}}-x y \hat{\mathbf{k}}$, evaluate $\iint_{S}(\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} \mathrm{d} S$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the $x y$-plane.
(b) Verify that the parametric equations

$$
x=\rho^{2} \cos \theta, \quad y=\rho^{2} \sin \theta, \quad z=\rho
$$

could be used to represent the surface $x^{2}+y^{2}-z^{4}=0$. Hence compute the unit normal to this surface at any point.

