UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2013/2014

B.Sc. / B.Ed. / B.A.S.S. / B.EENG. III

TITLE OF PAPER	:	VECTOR ANALYSIS
COURSE NUMBER	:	M312
TIME ALLOWED	:	THREE (3) HOURS
<u>INSTRUCTIONS</u>	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWER <u>ALL</u> QUESTIONS IN SECTION A. ANSWER ANY <u>THREE</u> QUESTIONS IN SECTION B.
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

93

SECTION A

QUESTION 1

(a) (i) The graph y = f(x) in the *xy*-plane automatically has the parametrization x = x, y = f(x), and the vector formula $\mathbf{r}(x) = x\hat{\mathbf{i}} + (f(x))\hat{\mathbf{j}}$. Use this formula to show that if f is a twice differentiable function of x, then

$$\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}.$$
[7]

(ii) Use the formula for κ in (i) to find the curvature of $y = \ln(\cos x), \quad -\pi/2 \le x \le \pi/2.$ [3]

(b) Let \mathbf{u} and \mathbf{v} be vectors in space. Prove the *Pythagorean Principle*,

$$|\mathbf{u} + \mathbf{v}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2 \iff \mathbf{u} \cdot \mathbf{v} = 0.$$
 [6]

(c) Find parametric equations for the tangent line to the curve
C₃: x = −t − 8, y = t² − 3, z = 2t − 5; -∞ < t < ∞, at the point
(-9, -2, -3). [4]

QUESTION 2

- (a) A path of a roller coaster ride (superimposed on a rectangular coordinate system) consists of part of the parabola y = x²/2 for x ≤ 0, followed by a circular loop for x ≥ 0. Find the equation of this loop if the track is *continuous*, smooth, and has *continuous curvature*.
- (b) Let $\mathbf{F} = (6xy + z^3)\hat{\mathbf{i}} + (3x^2 z)\hat{\mathbf{j}} + (3xz^2 y)\hat{\mathbf{k}}$ be a vector field.
 - (i) Show that **F** is irrotational. [3]
 - (ii) Find div curl \mathbf{F} . [2]
- (c) Let $\mathbf{u}(x, y, z) = y\hat{\mathbf{i}} x\hat{\mathbf{j}}$ and $\mathbf{v}(x, y, z) = \frac{\mathbf{u}}{(x^2 + y^2)^{\frac{1}{2}}}$ be vectors in space. Find the flow lines of \mathbf{u} and \mathbf{v} . [5,2]

SECTION B

QUESTION 3

(a) Find the principal unit normal vector and the outward unit normal vector to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1; \qquad a,b > 0,$$

traversed in the clockwise direction, at the point point $P\left(\frac{a}{\sqrt{2}}, \frac{-b}{\sqrt{2}}\right)$. Also, find the curvature, κ , and the radius of curvature, ρ , at the given point. [14]

(b) Find parametric equations for the line of intersection of the planes 3x-6y-2z = 15 and 2x + y + -2 = 5. [6]

QUESTION 4

(a) Derive the following alternative formula for the curvature function $\kappa = \kappa(t)$ of a smooth curve:

$$\kappa = \frac{|\mathbf{a} \times \mathbf{v}|}{|\mathbf{v}|^3}.$$

[6]

(b) Let $\mathbf{r}(t) = 6\cos t\hat{\mathbf{i}} + 6\sin t\hat{\mathbf{j}} + 2t\hat{\mathbf{k}}$. Find the following:

(i) $\mathbf{r}'(t) \cdot \mathbf{r}''(t)$; [2]

(ii)
$$\mathbf{r}'(t) \times \mathbf{r}''(t)$$
. [3]

(c) Evaluate
$$\lim_{t \to 1} \left(\frac{1}{t} \hat{\mathbf{i}} + \frac{\ln t}{t^2 - 1} \hat{\mathbf{j}} + \frac{t - 1}{t^2 - 1} \hat{\mathbf{k}} \right).$$
 [3]

- (d) Prove the Cauchy-Schwarz Inequality; $|\mathbf{u} \cdot \mathbf{v}| \le |\mathbf{u}| |\mathbf{v}|$, where \mathbf{u} and \mathbf{v} are vectors in space. [2]
- (e) Is the line x = 1-2t, y = 2+5t, z = -3t parallel to the plane 2x+y-z = 8? Give reasons for your answer. [4]

QUESTION 5

(a) Let D be the region in the xyz-space defined by the inequalities

$$1 \le x \le 2, \qquad 0 \le xy \le 2, \qquad 0 \le z \le 1.$$

Evaluate

$$\iiint_D (x^2y + 3xyz) \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

by applying the transformation

$$u = x, \qquad v = xy, \qquad w = 3z$$

and integrating over the appropriate region G in the uvw-space. [10]

(b) Find out which of the fields given below are conservative. For conservative fields, find a potential function.

(i)
$$\mathbf{F} = y\hat{\mathbf{i}} - x\hat{\mathbf{j}}$$
. [2]

(ii)
$$\mathbf{F} = \frac{x}{x^2 + y^2 + z^2} \,\hat{\mathbf{i}} + \frac{y}{x^2 + y^2 + z^2} \,\hat{\mathbf{j}} + \frac{z}{x^2 + y^2 + z^2} \,\hat{\mathbf{k}}.$$
 [8]

QUESTION 6

- (a) By any method, find the integral of $H(x, y, z) = x^2 z$ over the surface of the sphere $x^2 + y^2 + z^2 = 1$; $z \ge 0$ [10]
- (b) Verify Green's theorem in the plane for

$$\oint_C [(2xy - x^2)\mathrm{d}x + (x + y^2)\mathrm{d}y],$$

where C is the closed curve (described in the positive direction) of the region bounded by the curves $y = x^2$ and $y^2 = x$. [10]

QUESTION 7

- (a) If $\mathbf{F} = y\hat{\mathbf{i}} + (x 2xz)\hat{\mathbf{j}} xy\hat{\mathbf{k}}$, evaluate $\iint_{S} (\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} \, \mathrm{d}S$, where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the xy-plane. [10]
- (b) Verify that the parametric equations

$$x = \rho^2 \cos \theta, \quad y = \rho^2 \sin \theta, \quad z = \rho$$

could be used to represent the surface $x^2 + y^2 - z^4 = 0$. Hence compute the unit normal to this surface at any point. [10]

END OF EXAMINATION