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INSTRUCTIONS 1. 	 THIS PAPER CONSISTS OF 

SEVEN QUESTIONS. 

2. 	 ANSWER ALL QUESTIONS IN 

SECTION A. 

3. 	 ANSWER ANY THREE QUESTIONS 

IN SECTION B. 
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SECTION A 

QUESTION 1 

(a) 	 (i) The graph y = f(x) in the xy-plane automatically has the parametrization 

x = x, y = f(x), and the vector formula r(x) = xl + (f(x))J. Use this 

formula to show that if f is a twice differentiable function of x, then 

If"(x) I 
K(X) = [1 + (f'(X))2]3/2' 

[7] 

(ii) 	Use the formula for K in (i) to find the curvature ofy = In(cosx), -7r/2 :s; 

x :s; 7r/2. [3] 

(b) Let u and v be vectors in space. Prove the Pythagorean Principle, 

[6] 

(c) Find parametric equations for the tangent line to the curve 

0 3 : x = -t - 8, y = t2 
- 3, z = 2t  5; -00 < t < 00, at the point 

(-9, -2, -3). [4] 



QUESTION 2 


(a) A path of a roller coaster ride (superimposed on a rectangular coordinate sys

tem) consists of part of the parabola y = x2/2 for x :5 0, followed by a circular 

loop for x ~ O. Find the equation of this loop if the track is continuous, smooth, 

~~~~~~~ ~ 

'(b) Let F = (6xy + z3)I + (3x2 z)j + (3XZ2 - y)k be a vector field. 

(i) Show that F is irrotational. [3] 

(ii) Find divcurlF. [2] 

A A U 
(c) Let u(x,y,z) = yi - xj and v(x,y,z) = 1 be vectors in space. Find 

(x2 + y2)'2 
the flow lines of u and v. [5,2] 



SECTION B 


QUESTION 3 

(a) Find the principal unit normal vector and the outward unit normal vector to 

• 	 the ellipse 

a,b> 0, 

traversed in the clockwise direction, at the point point P ( ~, ~). Also, find 

the curvature, K" and the radius of curvature, p, at the given point. [14] 

(b) Find parametric equations for the line of intersection of the planes 3x - 6y - 2z = 

15 and 2x + y + -2 = 5. [6] 

QUESTION 4 

(a) Derive the following alternative formula for the curvature function K, = K,(t) of 

a smooth curve: 
la xvi 

K, = Ivl 3 • 

[6] 

(b) Let r(t) = 6 cos ti + 6 sin t3 + 2tk. Find the following: 

(i) 	 r(t)·r'(t); [2] 

(ii) 	 r'(t) xr"(t). [3] 

lA lnt A t-1A)
(c) 	 Evaluate ~ ( t i + t2 -lj + t2 _ 1 k . [3] 

(d) Prove the Cauchy-Schwarz Inequality; lu, vi s lullvl, wh~re uand v are vectors 

in space. [2] 

(e) 	 Is the line x = 1-2t, y = 2+5t, z = -3t parallel to the plane 2x+y-z = 8? 

Give reasons for your answer. [4] 



QUESTION 5 

(a) Let D be the region in the xyz-space defined by the inequalities 

1 S x S 2, Os xy S 2, OSzsl. 

• 
Evaluate 

2J J In (x y + 3xyz)dxdydz 

by applying the transformation 

u=x, v =xy, w=3z 

and integrating over the appropriate region G in the uvw-space. [10] 

(b) 	 Find out which of the fields given below are conservative. For conservative 

fields, find a potential function. 

(i) F = yi - xj. [2] 

(..) F - x ~ y -:: Z k
11 - x2+Y2+z2 1 + x2+y2+z2 J + x2+!p+z2 

A 

• [8] 

QUESTION 6 

(a) By any method, find the integral of H(x, y, z) = x2z over the surface of the 

sphere x 2 + y2 + Z2 = 1; z ~ 0 [10] 

(b) Verify Green's theorem in the plane for 

where C is the closed curve (described in the positive direction) of the region 

bounded by the curves y = x2 and y2 = x. [10] 



QUESTION 7 

(a) If F = yi + (x - 2xz)} - xYk, evaluate Jis (V x F)· ft dS, where S is the surface 

of the sphere x2 + y2 + z2 = a2 above the xy-plane. [10] 

(b) Verify that the parametric equations • 

could be used to represent the surface x2 + y2 - Z4 = O. Hence compute the 

unit normal to this surface at any point. [10] 

END OF EXAMINATION 


