Final Examination, 2013/2014

B.Sc. III, BASS III, B.Ed III

Title of Paper : Complex Analysis
Course Number : M313
Time Allowed : Three (3) Hours
\section*{Instructions}

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: Answer ALL Questions

A1. (a) What is the principal part of argz ?
(b) Show $\operatorname{Re}(i z)=-I m z$.
(c) Define and give example of a closure of a set S of complex numbers

A2. (a) Show that a linear transformation $\omega=A z+B$, where A and B are constant complex numbers, may be subdivided into a sequence of simple transformation. Describe them.
(b) Using Cauchy-Riemann equation (CRE)state the sufficient conditions theorem for a function $f(z)$ be differentiable at. z_{0}

A3. Give definition and example of
(a) Analytic function.
(b) Singular point.

A4. Prove that if $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, then u and v are harmonic in D.

A5. State
(a) Cauchy-Goursat theorem,
(b) Laurent series theorem.

A6. State and prove the Residue theorem.

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Construct the line $\operatorname{Re} \frac{1}{z}=\frac{1}{2}$.
(b) Find and sketch the region into which the triangle $x=1, y=x, y=0$ is mapped by the transformation $w=1+z^{2}$.
(c) Explain formular $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$.
(d) Find the limits. Give your reasonings
(i) $\lim _{z \rightarrow i} \frac{i z+2 i}{z-i}$,
(ii) $\lim _{z \rightarrow \infty} \frac{5 z^{2}}{(z-1)^{2}}$.
(e) Using just definition of derivative, find f^{\prime} if
(i) $f(z)=(z+1)^{2}$
(ii) $f(z)=\operatorname{Re} z$.

QUESTION B2 [20 Marks]

B2. (a) (i) Prove that if $f(z)=u+i v$ is differentiable at z_{0}, then u and v satisfy CRE,
(ii) then show that $f(z)=x^{2}+i 2 y$, where $z=x+i y$, is not differentiable.
(b) Derive CRE in polar coordinates.
(c) Find the analytic function $f(z)$, given that the real part $u=y^{3}-3 x^{2} y$.

QUESTION B3 [20 Marks]

B3. (a) Evaluate $\int_{c} \bar{z} d z$, where c, is the right-hand half of the circle $|z|=2$, from $z=-2 i$
to $z=2 i$.
(b) Apply Cauchy integral formula to evaluate
(i) $\int_{c} \frac{z^{2} d z}{\left(z^{2}+1\right)\left(z^{2}+9\right)}$,
if $c=\left\{z:|z|=2 \quad\right.$ in positive direction, and $|z|=\frac{3}{2}$ in negative direction $\}$
(ii) $\int_{c} \frac{d z}{z^{2}+3 z}$, where c is a positively oriented circle $|z|=2$.
(c) (i) State a Taylor series theorem,
(ii) and thus expland
$f(z)=\frac{1}{1-z}$ in Maclaurin series

QUESTION B4 [20 Marks]

B4. (a) Expand in Laurant series
(i) $f(z)=\frac{e^{z}}{z^{2}}$, near $z_{o}=0$,
(ii) $f(z)=\frac{1}{1+z}$, in powers of z in the domain $1<|z|<\infty$.
(b) Consider $f(z)=\frac{e^{-z}}{(z-1)^{2}}$.
(i) Find residue at $z=1$,
(ii) and thus evaluate $\int_{c} f(z) d z$, where c is a positively oriented circle $|z|=2$.
(c) Consider $f(z)=\frac{1-e^{2 z}}{z^{4}}$.
(i) Show that $z=0$ is a pole. Find its order,
(ii) Find residue at $z=0$.

B5. (a) Consider $f(z)=\frac{\sin z}{z}$.
(i) Show that $z=0$ is removable singular point.
(ii) Let $g(z)=f(z)$ for $z \neq 0$.

Define $g(0)$ to make $g(z)$ entire function
(b) Apply the Residue theorem to evaluate
(i) $\int_{c} \frac{d z}{z^{3}(z+4)}$, where c is a positively oriented circle $|z|=2$.
(ii) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{3}}$

End of Examination Paper

