UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, 2013/2014

B.Sc. III, BASS III, B.Ed III

Title of Paper	: Complex Analysis
Course Number	: M313
Time Allowed	: Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer **ALL** questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: Answer ALL Questions	100	
 A1. (a) What is the principal part of argz? (b) Show Re(iz) = -Imz. (c) Define and give example of a closure of a set S of complex numbers 		(2,2,3)
A2. (a) Show that a linear transformation $\omega = Az + B$, where A and B are conplex numbers, may be subdivided into a sequence of simple transformation them.	stant com- 1. Describe	
(b) Using Cauchy-Riemann equation (CRE)state the sufficient condition for a function $f(z)$ be differentiable at z_0	ns theorem	(5,5)
A3. Give definition and example of(a) Analytic function.(b) Singular point.		(2,2)
A4. Prove that if $f(z) = u(x, y) + iv(x, y)$ is analytic in a domain D, then u harmonic in D.	ι and υ are	(6)
A5. State		
(a) Cauchy-Goursat theorem,(b) Laurent series theorem.		(3,3)
A6. State and prove the Residue theorem.		(7)

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

¥

B1.	(a)	Construct the line $Re\frac{1}{z} = \frac{1}{2}$.	(4)
	(b)	Find and sketch the region into which the triangle $x = 1, y = x, y = 0$ is mapped by the transformation $w = 1 + z^2$.	(4)
	(c)	Explain formular $\lim_{z \to z_0} f(z) = w_0$.	(2)
	(d)	Find the limits. Give your reasonings (i) $\lim_{z \to i} \frac{iz+2i}{z-i}$, (ii) $\lim_{z \to \infty} \frac{5z^2}{(z-1)^2}$.	(3,2)
	(e)	Using just definition of derivative, find f' if (i) $f(z) = (z + 1)^2$ (ii) $f(z) = Rez$.	(2,3)

1

•

QUESTION B2 [20 Marks]

B2. (a) (i) Prove that if f(z) = u + iv is differentiable at z_0 , then u and v satisfy CRE, (ii) then show that $f(z) = x^2 + i2y$, where z = x + iy, is not differentiable. (5,2)

- (b) Derive CRE in polar coordinates.
- (c) Find the analytic function f(z), given that the real part $u = y^3 3x^2y$. (7)

QUESTION B3 [20 Marks]

- B3. (a) Evaluate $\int_c \overline{z} dz$, where c, is the right-hand half of the circle |z| = 2, from z = -2ito z = 2i. (6) (b) Apply Cauchy integral formula to evaluate (i) $\int_c \frac{z^2 dz}{(z^2 + 1)(z^2 + 9)}$, if $c = \left\{ z : |z| = 2$ in positive direction, and $|z| = \frac{3}{2}$ in negative direction $\right\}$ (ii) $\int_c \frac{dz}{z^2 + 3z}$, where c is a positively oriented circle |z| = 2. (3,5) (c) (i) State a Taylor series theorem, (ii) and thus expland
 - $f(z) = \frac{1}{1-z}$ in Maclaurin series (2,4)

QUESTION B4 [20 Marks]

B4. (a) Expand in Laurant series

(i)
$$f(z) = \frac{e^z}{z^2}$$
, near $z_o = 0$,
(ii) $f(z) = \frac{1}{1+z}$, in powers of z in the domain $1 < |z| < \infty$.
(3,4)

- (b) Consider $f(z) = \frac{e^{-z}}{(z-1)^2}$.
- (i) Find residue at z = 1,
- (ii) and thus evaluate $\int_c f(z) dz$, where c is a positively oriented circle |z| = 2. (5,2)
- (c) Consider $f(z) = \frac{1-e^{2z}}{z^4}$.
- (i) Show that z = 0 is a pole. Find its order,
- (ii) Find residue at z = 0.

2

101

(6)

(3,3)

QUESTION B5 [20 Marks]

¥

JUESTION B5 [20 Marks]	102	
P5 (a) Consider $f(z) = \frac{\sin z}{2}$		
B5. (a) Consider $f(z) = \frac{1}{z}$.		
(i) Show that $z = 0$ is removable s	ingular point.	
(ii) Let $g(z) = f(z)$ for $z \neq 0$.		
Define $g(0)$ to make $g(z)$ entire fu	nction (4,2	2)
(b) Apply the Residue theorem to	evaluate	
(i) $\int_c \frac{dz}{z^3(z+4)}$, where c is a posit	ively oriented circle $ z = 2$.	
(ii) $\int_0^\infty \frac{dx}{(x^2+1)^3}$	(6,8	3)
	,	

__END OF EXAMINATION PAPER___

3