UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, 2013/2014

B.Sc. III, BASS III, B.Ed III

Title of Paper : Complex Analysis

Course Number : M313

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer **ALL** questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B. only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SEC	CTION A [40 Marks]: Answer ALL Questions	
A1.	 (a) Represent a complex number in algebraic, trigonometric and exponential form. (b) Show Im(iz) = Rez. 	
	(c) Define and give example of an open set of complex numbers.	(2,2,3)
A2.	(a) A semicircle $ z = 1$, $Rez > 0$, is transformed by a linear transformation into a semicircle $ w+2 = 2$ with negative imaginary part. Find this linear transformation.	
	(b) Using Cauchy-Riemann equations (CRE) state the necessary conditions theorem for the function be differentiable at z_o	(5,5)
A3.	Give definition and example of	
	(a) entire function,	
	(b) harmonic function.	(2,2)
A4.	Prove that if $f(z) = u(x, y) + iv(x, y)$ is analytic in domanin D then v is harmonic conjugate of u.	(7)
A5.	State	
	(a) Cauchy integral formular for	
	$\int_{c} \frac{f(z)dz}{z-z_{o}}.$	
	(b) Taylor series theorem.	(3,3)
A6.	Classify and give examples of isolated singular points.	(6)

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

ş.

B1.	(a)	Construct the line $Re\frac{1}{z+2} = \frac{1}{4}$.	(4)
	(b)	Find and sketch the region into which the square $x = 0, x = 1, y = 0, y = 1$ is mapped by the transformation $w = e^{z}$.	(4)
	(c)	Define a function $f(z)$ continuous at z_0 .	(2)
	(d)	Find the limits. Give your reasonings	
		(i) $\lim_{z \to -1} \frac{z - 3i}{2z + 2}$,	,
		(ii) $\lim_{z \to \infty} \frac{2z+i}{z+1}.$	(2,3)
	(e)	Using just definition of derivative find f' if	
		(i) $f(z) = (z - 3)^2$,	
		(ii) $f(z) = Imz$.	(2,3)

1

QUESTION B2 [20 Marks]

r

	(a) Using CRE (25)	
1.72.	(i) State the sufficient conditions theorem for existence of $f'(z)$ and thus	
	(ii) Check if there is f', g' for $f = z^2 + 3z + 3$ and $g = e^x e^{iy}$. Find f' and g' .	(3,3)
	(b) Derive CRE in polars. (b) Derive CRE in polars.	(6)
	(c) Find the analytic function $f(z) = u(x, y) + iv(x, y)$, given that the imaginary par $v = 3x + 2xy$ and $f(-i) = 2$.	• •
QUE	ESTION B3 [20 Marks]	
B3.	(a) Evaluate $\int_c \sqrt{z} dz$, where c is the upper half of the circle $ z = 3$, from $z = 3$ t $z = -3$.	o (5)
	(b) Apply Caucy integral formular to evaluate	
	(i) $\int_c \frac{dz}{z^2(z^2+25)}$, if	
	$c = \{z : z = 4 \text{ in positive direction, and } z = 2 \text{ in negative direction} \}.$	
	(ii) $\int_c \frac{dz}{z^2 + 2z}$, where c is a positively oriented circle $ z = 1$.	(3,5
	(c) State the Laurent series theorem.	
	(d) Expand $f(z) = \frac{1}{1+z}$ in Maclaurin series.	(4)
QUI	ESTION B4 [20 Marks]	
B4.	(a) Expand in Laurent series	
	(i) $f(z) = \frac{e^z}{z}$, near $z_0 = 0$,	
	(ii) $f(z) = \frac{1}{(1-z)(2+z)}$, in power of z in the domain $ z < 1$.	(3.4)
	(b) Consider $f(z) = \frac{z - \sin z}{z}$	
	(i) Find residue at $z = 0$,	
	(ii) and thus evaluate $\int_{c} f(z) dz$, where c is a positively oriented circle $ z = 1$.	(5,2)
	(c) Consider $f(z) = \frac{e^{2z}}{(z-1)^2}$.	

- (i) show that z = 1 is a pole. Find its order.
- (ii) Find residue at z = 1.

¥

2

(3,3)

QUESTION B5 [20 Marks]

QUESTION BS [20 Marks]	106
B5. (a) Consider $f(z) = \frac{e^z - 1}{z}$.	
(i) Show that $z = 0$ is removable singular point.	
(ii) Let $g(z) = f(z)$ for $z \neq 0$.	
Define $g(0)$ to make $g(z)$ entire function.	(4,2)
(b) Apply the Residue theorem to evaluate	
(i) $\int_c \frac{dz}{z^2 + 4}$, where c is a positively oriented circle $ z + i = 2$.	
(ii) $\int_0^\infty \frac{\cos x}{x^2 + a^2} dx, a > 0.$	(6,8)

END OF EXAMINATION PAPER_____

3

.