University of Swaziland

107
Final Examination, 2013/2014

B.Sc. III, B.Eng III, B.Ed III, BASS III

Title of Paper : Abstract Algebra I
Course Number : M323
Time Allowed : Three (3) Hours
Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: Answer ALL Questions

A1. (a) Find (a, b) and [$a, b]$ by first decomposing (writing) as a product of primes

$$
\begin{equation*}
a=144 \quad b=1250 \tag{10}
\end{equation*}
$$

(b) Solve the system

$$
\begin{aligned}
& 3 x \equiv 2(\bmod 5) \\
& 2 x \equiv 1(\bmod 3)
\end{aligned}
$$

A2. Let $\varphi: G \rightarrow H$ be an isomorphism of groups.
(i) Prove that if e_{G} and e_{H} are the identity elements of G and H respectively, then
(i) $\left(e_{G}\right) \varphi=e_{H}$
(ii) $[(a) \varphi]^{-1}=\left(a^{-1}\right) \varphi \forall a \in G$.
(b) Given an example of a group satisfying the given conditions or, if there is no such group, say so. (Do not prove anything)
(i) A cyclic group of order 4
(ii) A non-abelian group of order 5
(iii) An infinite cyclic group
(iv) A non-abelian cyclic group

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Prove that if G is a group and that $\forall a \in G \quad a^{2}=e$, then G is abelian.
(b) For a group G define the following relation for $a, b, \in G$:
" $a R b \Leftrightarrow$ there exists $x \in G$ such tat $b=x^{-1} a x$ "
Show that the above relation is an equivalence relation

QUESTION B2 [20 Marks]

B2. (a) (i) Find all the conjugate elements of $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)$ is S_{3}
(ii) Determine the order of $(1346)(287)$ in S_{8}
(b) Prove that every group of prime order is cyclic.

QUESTION B3 [20 Marks]

B3. (a) Find all subgroups of \mathbb{Z}_{12} and draw the lattice diagram
(b) For each binary operation \star defined on a set G, say whether or not \star gives a group structure on the set
(i) $G=\mathbb{Q} ; \quad a \star b=\frac{a \times b}{3}$
(ii) $G=\mathbb{Q}-\{1\} \quad a \star b=a+b+a \times b$
where: + is the usual addition and x is the usual multiplication.

QUESTION B4 [20 Marks]

B4. Let $\alpha\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 1 & 7 & 8 & 5 & 6 & 4\end{array}\right)$ and $\beta\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 1 & 7 & 6 & 2 & 8 & 4 & 3\end{array}\right)$
(a) Express α and β as products of disjoint cycles, and then as products of transpositions. For each of them, say whether it is an even permutation or an odd one.
(b) Compute $\alpha^{-1} ; \beta^{-1} o \alpha$ and $(\alpha o \beta)^{-1}$

$$
c^{2}+2-x+0
$$

(c) Find the order of β.

QUESTION B5 [20 Marks]

B5. (a) Let $H=<8>$ be the group of \mathbb{Z}_{20} generated by the element 8 . Find all cosets of H in \mathbb{Z}_{20}
(b) Prove that every subgroup of a cyclic group is cyclic.

