UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, 2013/2014

B.Sc. III, B.Eng III, B.Ed III, BASS III

Title of Paper	: Abstract Algebra I
Course Number	: M323
Time Allowed	: Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer ${\bf ALL}$ questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been given by the invigilator.

,07

SECTION A [40 Marks]: Answer ALL Questions

A1. (a) Find (a, b) and [a, b] by first decomposing (writing) as a product of primes

$$a = 144$$
 $b = 1250$

108

(10)

(8)

(b) Solve the system

 $\begin{array}{rcl} 3x & \equiv & 2(mod5) \\ 2x & \equiv & 1(mod3) \end{array}$

A2. Let $\varphi: G \to H$ be an isomorphism of groups.

(i) Prove that if e_G and e_H are the identity elements of G and H respectively, then

(i) $(e_G)\varphi = e_H$

(ii)
$$[(a)\varphi]^{-1} = (a^{-1})\varphi \forall a \in G.$$
 (6)

(b) Given an example of a group satisfying the given conditions or, if there is no such group, say so. (Do not prove anything)

(i) A cyclic group of order 4

(ii) A non-abelian group of order 5

(iii) An infinite cyclic group

(iv) A non-abelian cyclic group

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

B1.	(a)	Prove that if G is a group and that $\forall a \in G \ a^2 = e$, then G is abelian.	(10)
	(b)	For a group G define the following relation for $a, b, \in G$:	
		" $aRb \Leftrightarrow$ there exists $x \in G$ such tat $b = x^{-1}ax$ "	
		Show that the above relation is an equivalence relation	(10)

QUESTION B2 [20 Marks]

B2.	(a) (i) Find all the conjugate elements of ($\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$\frac{2}{1}$	3 3) is S_3	(5)
	(ii) Determine the order of $(1346)(287)$ in	S_8				(5)

1

(b) Prove that every group of prime order is cyclic. (10)

QUESTION B3 [20 Marks]

B3. (a) Find all subgroups of \mathbb{Z}_{12} and draw the lattice diagram (10)

(b) For each binary operation \star defined on a set G, say whether or not \star gives a group structure on the set

(i)
$$G = \mathbb{Q}; \quad a \star b = \frac{a \times b}{3}$$

(ii) $G = \mathbb{Q} - \{1\}$ $a \star b = a + b + a \times b$

where: + is the usual addition and

 \times is the usual multiplication.

QUESTION B4 [20 Marks]

(a) Express α and β as products of disjoint cycles, and then as products of transpositions. For each of them, say whether it is an even permutation or an odd one.

- (b) Compute α^{-1} , $\beta^{-1}o\alpha$ and $(\alpha o\beta)^{-1}$ (9)
- (c) Find the order of β .

QUESTION B5 [20 Marks]

35.	(a) Let $H = < 8 >$ be the group of \mathbb{Z}_{20} generated by the element 8. Find all cosets of	
	H in \mathbb{Z}_{20}	(10)
	(b) Prove that every subgroup of a cyclic group is cyclic.	(10)

_End of Examination Paper___

2

(3)

(6)

(5)