UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, 2013/2014

B.Sc. III, B.Eng III, B.Ed III, BASS III

Title of Paper: Abstract Algebra ICourse Number: M323

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer **ALL** questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: None

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SEC	CTION A [40 Marks]: Answer ALL Questions	nt	
A1.	(a) (i) Define the notion of "NORMAL SUBGROUP" of a group.		(4)
	(ii) Verify the subgroup $H = \{(1), (123), (132)\}$ is a normal subgroup of S_3 .		
	(b) Prove that every subgroup of a cyclic group is cyclic.		(10)
A2.	(a) Suppose that m, a, b are positive integers such that $(a, m) = 1$ and (b, m) Prove that $(ab, m) = 1$	= 1	(10)
	(b) (i) Express $d = (1290, 465)$ as an integral linear combination of 2190 and 46	5	(5)
	(ii) Solve the following $3x \equiv 5 \pmod{11}$		(4)

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Find all subgroups of Z₁₈ and draw the lattice diagram. (10)
(b) Let G and H be group, φ: G → H be an insomorphism of G and H and let e be the identity of G. Prove that (e)φ is the identity in H and that (a⁻¹)φ = [(a)φ]⁻¹ for all a ∈ G. (10)

QUESTION B2 [20 Marks]

B2.	(a) Prove that a non-abelian group of order $2p, p$ prime, contains at least one element	
	of order p.	(6)

(b) Consider the the following permutations in S_6

$$\begin{split} P &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix} \\ \text{Compute (i) } P\sigma \\ (\text{ii) } \sigma^2 \\ (\text{iii) } \sigma^{-1} \\ (\text{iv) } \sigma^{-2} \\ (\text{v) } P\sigma^2 \\ (\text{c) Write the permutations in (b) as a product of dijoint cycles in } S_6 \end{split}$$

(10)(4)

1

QUESTION B3 [20 Marks]

	•	12	
B3.	(i) State Cayley's theorem	(4)
	(ii) Let (\mathbb{R}^+, \cdot) be the multiplicative group of all positive real numbers and $(\mathbb{R}, +$ the additive group of real all numbers. Show that (\mathbb{R}^+, \cdot) is isomorphic to $(\mathbb{R}, +$	-) be +). (6)
	(b) (i) Find the number of generators in each of the following cyclic groups \mathbb{Z}_{30} \mathbb{Z}_{42} .	and (5	ı)
	(ii) Determine the right cosets of $4 = \langle 4 \rangle$ in \mathbb{Z}_8	(5	i)

QUESTION B4 [20 Marks]

- B4. (a) For each binary operation * defined on a set G, say whether or not it * gives a group structure on the set
 - (i) Define * on \mathbb{Q}^+ by $a * b = \frac{ab}{2} \quad \forall a, b \in \mathbb{Q}^+$ (5)
 - (ii) Define α on \mathbb{R} by $a * b = ab + a + b \quad \forall a, b \in \mathbb{R}$ (5)
 - (b) Show that \mathbb{Z}_6 and S_3 are NOT isomorphic and that \mathbb{Z} and $5\mathbb{Z}$ are isomorphic. (10)

QUESTION B5 [20 Marks]

B5.	(a) Show that \mathbb{Z}_p has no proper subgroup if p is prime.		(6)
	(b) Show that if $(a, m) = 1$ and $(b, m) = 1$ then $(ab, m) = 1$.	$a, b, m \in \mathbb{Z}.$	(6)
	(c) Prove that every group of prime order is cyclic.		(8)

END OF EXAMINATION PAPER