Supplementary Examination, 2013/2014

B.Sc. III, B.Eng III, B.Ed III, BASS III

Title of Paper	: Abstract Algebra I
Course Number	$:$ M323
Time Allowed	$:$ Three (3) Hours
Instructions	

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Narks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been given by the invigilator.

A1. (a) (i) Define the notion of "NORMAL SLBGROUP" of a group.
(ii) Verify the subgroup $H=\{(1),(123),(132)\}$ is a normal subgroup of S_{3}.
(b) Prove that every subgroup of a cyclic group is cyclic.

A2. (a) Suppose that m, a, b are positive integers such that $(a, m)=1$ and $(b, m)=1$ Prove that $(a b, m)=1$
(b) (i) Express $d=(1290,465)$ as an integral linear combination of 2190 and 465
(ii) Solve the following $3 x \equiv 5(\bmod 11)$

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Find all subgroups of \mathbb{Z}_{18} and draw the lattice diagram.
(b) Let G and H be group, $\varphi: G \rightarrow H$ be an insomorphism of G and H and let e be the identity of G. Prove that $(e) \varphi$ is the identity in H and that $\left(a^{-1}\right) \varphi=[(a) \varphi]^{-1}$ for all $a \in G$.

QUESTION B2 [20 Marks]

B2. (a) Prove that a non-abelian group of order $2 p, p$ prime, contains at least one element of order p.
(b) Consider the the following permutations in S_{6}
$P=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2\end{array}\right) \sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5\end{array}\right)$
Compute (i) $\mathrm{P} \mathrm{\sigma}$
(ii) σ^{2}
(iii) σ^{-1}
(iv) σ^{-2}
(v) $\rho^{\prime} \sigma^{2}$
(c) Write the permutations in (b) as a product of dijoint cycles in S_{6}

QUESTION B3 [20 Marks]

B3. (i) State Cayley's theorem
(ii) Let $\left(\mathbb{R}^{+}, \cdot\right)$ be the multiplicative group of all positive real numbers and $(\mathbb{R},+)$ be the additive group of real all numbers. Show that $\left(\mathbb{R}^{+}, \cdot\right)$ is isormorphic to $(\mathbb{R},+)$.
(b) (i) Find the number of generators in each of the following cyclic groups \mathbb{Z}_{30} and \mathbb{Z}_{42}.
(ii) Determine the right cosets of $4=\langle 4\rangle$ in \mathbb{Z}_{8}

QUESTION B4 [20 Marks]

B4. (a) For each binary operation $*$ defined on a set G, say whether or not it $*$ gives a group structure on the set
(i) D (ffinc * on \mathbb{Q}^{+}by $a * b=\frac{a b}{2} \quad \forall a, b \in \mathbb{Q}^{+}$
(ii) Define c on \mathbb{R} by $a * b=a b+a+b \quad \forall a, b \in \mathbb{R}$
(b) Show that \mathbb{Z}_{6} and S_{3} are NOT isomorphic and that \mathbb{Z} and $5 \mathbb{Z}$ are isomorphic.

QUESTION B5 [20 Marks]

B5. (a) Show that \mathbb{Z}_{p} has no proper subgroup if p is prime.
(b) Show that if $(a, m)=1$ and $(b, m)=1$ then $(a b, m)=1, \quad a, b, m \in \mathbb{Z}$
(c) Prove that every group of prime order is cyclic.

