UNIVERSITY OF SWAZILAND

MAIN EXAMINATION 2013/2014

BSc. /BEd. /B.A.S.S II

TITLE OF PAPER	:	Real Analysis
COURSE NUMBER	:	M 331
TIME ALLOWED	:	3 HOURS
SPECIAL REQUIREMENTS	:	NONE

Instructions

(a) Candidates may attempt:

- (i) ALL questions in Section A and
- (ii) At most THREE questions in Section B.

(b) Each question should start on a fresh page.

1

		114
	SECTION A (40 marks)	
Cano	didates may attempt ALL questions being careful to number them A1 to A6.	
A1.	(a) Find all $x \in \mathbb{R}$ that satisfy the inequality $ x+1 + x+2 < 3$.	[4]
	(b) What does it mean to say that $\alpha \in \mathbb{R}$ is an upper bound for a non-emp $S \subseteq \mathbb{R}$?	pty set [2]
	(c) Does the set $\{x \in \mathbb{R} : x+1 + x+2 < 3\}$ have an upper bound? Justimanswer.	fy your [2]
A2.	(a) Precisely explain each of the following statements about a sequence (x_n) is	
	(i) (x_n) is convergent. (ii) (x_n) is Cauchy.	[2] [2]
	(b) State the Cauchy convergence criterion for sequences in \mathbb{R} .	[2]
A3.	(a) Precisely explain the followings statements about a function $f : [a, b] \to \mathbb{R}$ (i) f is continuous at $c \in (a, b)$.	2. [2]
	(ii) f is continuous on $[a, b]$.	[2]
	(b) Give an example of a function $f : [0, 1] \to \mathbb{R}$ that is not continuous at every of $[0, 1]$ but such that $ f $ is continuous on $[0, 1]$. Justify your answer.	y point [2]
A4.	Let $f:[a,b] \to \mathbb{R}$ be a function and let $c \in (a,b)$.	
	(a) Precisely explain the statement: " f is differentiable at c ".	[2]
	(b) Is the following statement true or false? Justify your answer.	
	" f is differentiable at c whenever f is continuous at c ".	[2]
	(c) Give an example of two functions $f, g: [-1, 1] \to \mathbb{R}$ that are both not different at $x = 0$ but such that $f + g$ is differentiable at $x = 0$. Justify your answer	
	2	

.

÷

AE	(a) Presidely explain the following statements shout a series $\sum a_{ij}$ in \mathbb{P}	115		
A5.	(a) Precisely explain the following statements about a series $\sum a_n$ in \mathbb{R}			
	(i) $\sum a_n$ is convergent.	[2]		
	(ii) $\sum a_n$ is absolutely convergent.	[2]		
	(b) State the Cauchy convergence criterion for series in \mathbb{R} .	[2]		
	(c) Is the following statement true or false? Justify your answer.			
	"There is a series in $\mathbb R$ that is convergent but not absolutely convergent".	[2]		
A6.	(a) State the Riemann criterion for a function $f : [a, b] \to \mathbb{R}$ to be integrable.	[2]		
	(b) Is each of the following statements true or false? Justify your answers.			
	(i) There are 2 distinct functions $g, h : [0,1] \rightarrow \mathbb{R}$ such that $g < h$ and yet			
	$\int_{0}^{1} g > \int_{0}^{1} h.$	[2]		

 $\begin{array}{l} \int_0^{-}g > \int_0^{-}h. \eqno(2) \\ \text{(ii) There is a function } f:[0,1] \to \mathbb{R} \text{ such that } |f| \text{ is integrable but } f \text{ is not integrable.} \end{array}$

3

	ĮLЬ			
SECTION B (60 marks)				
Candidates may attempt TWO questions being careful to number them B7 to	B11.			
B7. Let S be a non-empty set in \mathbb{R} and let $u, v \in \mathbb{R}$.				
(a) Precisely explain each of the following statements.				
(i) $u = \sup S$.	[2]			
(ii) $v = \inf S$.	[2]			
(iii) S has a minimum in \mathbb{R} .	[2]			
(iv) S is bounded below.	[2]			
(b) Let $b < 0$ and let $T := \{bx : x \in S\}$. Prove that $\sup T = b \inf S$ and				
$\inf T = b \sup S.$	[8]			
(c) Prove that if S has a minimum in \mathbb{R} then S is bounded below.	[4]			
B8. (a) Precisely explain each of the following statements about a sequence	(x_{-}) in \mathbb{R}			
(i) (x_n) is bounded below.	[2]			
(i) (x_n) is decreasing.	[2]			
(b) Prove that if (x_n) is bounded below and decreasing then it is conver				
(c) Let $x_1 \ge 2$ and $x_{n+1} = 1 + \sqrt{x_n - 1}$.	C []			
(i) Show that (x_n) is bounded below by 2.	[5]			
(ii) Also show that (x_n) is decreasing.	[5]			
(iii) Find $\lim(x_n)$.	[2]			
B9. (a) Let $f, g: [a, b] \to \mathbb{R}$ be functions, let $k \in \mathbb{R}$ and let $c \in (a, b)$.				
	[2]			
x ightarrow c				
(ii) Show that if both $\lim_{x\to c} f$ and $\lim_{x\to c} (f+g)$ exist then $\lim_{x\to c} g$ exists.	[4]			
(iii) Prove that $\lim_{x \to c} kf = k \lim_{x \to c} f$.	[4]			
(iv) Give an example of f, c for which $\lim_{x \to c} f$ does not exist.	[2]			
(b) State (Bolzano's) Intermediate Value Theorem.	[2]			
(c) Use the Intermediate Value Theorem to show that equation $\sin x =$ solution in the interval $[0, \pi/2]$.	x = 1 - x has a [4]			
(d) Give an example of functions $f, g : [-1, 1] \to \mathbb{R}$ that are both not of $x = 0$ and yet fg is continuous at $x = 0$.	continuous at [2]			
4				

112 B10. (a) Prove that if a function $f:[a,b] \to \mathbb{R}$ is differentiable at $c \in (a,b)$ then f is continuous at c. [4] (b) Is the converse of the previous statement true? Justify your answer. [2] (c) Let $f: [-1,1] \to \mathbb{R}$ be a function defined by $f(x) = \begin{cases} x^2 \sin(1/x^2) & \text{for } x \neq 0\\ 0 & \text{otherwise} \end{cases}$ (i) Show that f is differentiable at x = 0. [4] (ii) Is f continuous at x = 0? Justify your answer. [2](d) State the Mean Value Theorem for derivatives. [2](e) Suppose that $f: [0,2] \to \mathbb{R}$ is continuous on [0,2] and differentiable on (0,2) with f(1) = f(2) = 1. Show that $\exists c \in (1, 2) : f'(c) = 0$. [2](f) Use the Mean Value Theorem to prove that $0.5 < \ln 2 < 1$. [4] B11. (a) Prove that if $\sum a_n$ converges then $\lim(a_n) = 0$. [4][2](b) Is the converse of the previous statement true? Justify your answer. (c) If $\sum a_n$ is absolutely convergent and (a_n) is a bounded sequence, show that $\sum a_n^2$ is absolutely convergent. [4] (d) Let function $f:[0,2] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 2 & \text{if } x \in [0,1) \\ 3 & \text{if } x = 1 \\ 1 & \text{if } x \in (1,2] \end{cases}$ Show that f is integrable on [0, 2] and evaluate its integral. [10]END OF QUESTION PAPER 5