

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A6.

A1. (a) Find all $x \in \mathbb{R}$ that satisfy the inequality $|x+1|+|x+2|<3$.
(b) What does it mean to say that $\alpha \in \mathbb{R}$ is an upper bound for a non-empty set $S \subseteq \mathbb{R}$?
(c) Does the set $\{x \in \mathbb{R}:|x+1|+|x+2|<3\}$ have an upper bound? Justify your answer.

A2. (a) Precisely explain each of the following statements about a sequence (x_{n}) in \mathbb{R}.
(i) $\left(x_{n}\right)$ is convergent.
[2]
(ii) $\left(x_{n}\right)$ is Cauchy.
(b) State the Cauchy convergence criterion for sequences in \mathbb{R}.

A3. (a) Precisely explain the followings statements about a function $f:[a, b] \rightarrow \mathbb{R}$.
(i) f is continuous at $c \in(a, b)$.
(ii) f is continuous on $[a, b]$.
(b) Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ that is not continuous at every point of $[0,1]$ but such that $|f|$ is continuous on $[0,1]$. Justify your answer.

A4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and let $c \in(a, b)$.
(a) Precisely explain the statement: " f is differentiable at c ".
(b) Is the following statement true or false? Justify your answer. " f is differentiable at c whenever f is continuous at c ".
(c) Give an example of two functions $f, g:[-1,1] \rightarrow \mathbb{R}$ that are both not differentiable at $x=0$ but such that $f+g$ is differentiable at $x=0$. Justify your answer. [2]

A5. (a) Precisely explain the following statements about a series $\sum a_{n}$ in \mathbb{R}
(i) $\sum a_{n}$ is convergent.
(ii) $\sum a_{n}$ is absolutely convergent.
(b) State the Cauchy convergence criterion for series in \mathbb{R}.
(c) Is the following statement true or false? Justify your answer.
"There is a series in \mathbb{R} that is convergent but not absolutely convergent".

A6. (a) State the Riemann criterion for a function $f:[a, b] \rightarrow \mathbb{R}$ to be integrable.
(b) Is each of the following statements true or false? Justify your answers.
(i) There are 2 distinct functions $g, h:[0,1] \rightarrow \mathbb{R}$ such that $g<h$ and yet $\int_{0}^{1} g>\int_{0}^{1} h$.
(ii) There is a function $f:[0,1] \rightarrow \mathbb{R}$ such that $|f|$ is integrable but f is not integrable.

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B7 to B11.

B7. Let S be a non-empty set in \mathbb{R} and let $u, v \in \mathbb{R}$.
(a) Precisely explain each of the following statements.
(i) $u=\sup S$.
(ii) $v=\inf S$.
(iii) S has a minimum in \mathbb{R}.
(iv) S is bounded below.
(b) Let $b<0$ and let $T:=\{b x: x \in S\}$. Prove that $\sup T=b \inf S$ and $\inf T=b \sup S$
(c) Prove that if S has a minimum in \mathbb{R} then S is bounded below.

B8. (a) Precisely explain each of the following statements about a sequence $\left(x_{n}\right)$ in \mathbb{R}.
(i) $\left(x_{n}\right)$ is bounded below.
[2]
(ii) $\left(x_{n}\right)$ is decreasing.
(b) Prove that if $\left(x_{n}\right)$ is bounded below and decreasing then it is convergent. [4]
(c) Let $x_{1} \geq 2$ and $x_{n+1}=1+\sqrt{x_{n}-1}$.
(i) Show that $\left(x_{n}\right)$ is bounded below by 2 .
(ii) Also show that $\left(x_{n}\right)$ is decreasing.
(iii) Find $\lim \left(x_{n}\right)$.

B9. (a) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be functions, let $k \in \mathbb{R}$ and let $c \in(a, b)$.
(i) Give a precise meaning of the statement: $\lim _{x \rightarrow c} f$ exists.
(ii) Show that if both $\lim _{x \rightarrow c} f$ and $\lim _{x \rightarrow c}(f+g)$ exist then $\lim _{x \rightarrow c} g$ exists.
(iii) Prove that $\lim _{x \rightarrow c} k f=k \lim _{x \rightarrow c} f$.
(iv) Give an example of f, c for which $\lim _{x \rightarrow c} f$ does not exist. [2]
(b) State (Bolzano's) Intermediate Value Theorem.
(c) Use the Intermediate Value Theorem to show that equation $\sin x=1-x$ has a solution in the interval $[0, \pi / 2]$.
(d) Give an example of functions $f, g:[-1,1] \rightarrow \mathbb{R}$ that are both not continuous at $x=0$ and yet $f g$ is continuous at $x=0$.

B10. (a) Prove that if a function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable at $c \in(a, b)$ then f is continuous at c.
(b) Is the converse of the previous statement true? Justify your answer.
(c) Let $f:[-1,1] \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{aligned}
x^{2} \sin \left(1 / x^{2}\right) & \text { for } x \neq 0 \\
0 & \text { otherwise }
\end{aligned}\right.
$$

(i) Show that f is differentiable at $x=0$.
(ii) Is f continuous at $x=0$? Justify your answer.
(d) State the Mean Value Theorem for derivatives.
(e) Suppose that $f:[0,2] \rightarrow \mathbb{R}$ is continuous on $[0,2]$ and differentiable on $(0,2)$ with $f(1)=f(2)=1$. Show that $\exists c \in(1,2): f^{\prime}(c)=0$.
(f) Use the Mean Value Theorem to prove that $0.5<\ln 2<1$.

B11. (a) Prove that if $\sum a_{n}$ converges then $\lim \left(a_{n}\right)=0$.
(b) Is the converse of the previous statement true? Justify your answer.
(c) If $\sum a_{n}$ is absolutely convergent and $\left(a_{n}\right)$ is a bounded sequence, show that $\sum a_{n}^{2}$ is absolutely convergent.
(d) Let function $f:[0,2] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}2 & \text { if } x \in[0,1) \\ 3 & \text { if } x=1 \\ 1 & \text { if } x \in(1,2]\end{cases}
$$

Show that f is integrable on $[0,2]$ and evaluate its integral.

