UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2013/2014

1

BSc. /BEd. /B.A.S.S II

TITLE OF PAPER	:	Real Analysis
COURSE NUMBER	:	M 331
TIME ALLOWED	:	3 HOURS
SPECIAL REQUIREMENTS	:	NONE

Instructions

(a) Candidates may attempt:

- (i) ALL questions in Section A and
- (ii) At most THREE questions in Section B.
- (b) Each question should start on a fresh page.

ι**ι 8** Μ 331

	IA
SECTION A (40 marks)	
Candidates may attempt ALL questions being careful to number them A1 to A6	
 A1. (a) Find all x ∈ ℝ that satisfy the inequality 3x < x - 2 . (b) State the infimum property for a non-empty subset of ℝ. (c) Does the set {x ∈ ℝ : x + 1 + x + 2 < 3} have an infimum? Juanswer. 	[4] [2] ustify your [2]
A2. Let $(x_n), (y_n)$ be sequences in \mathbb{R} .	
(a) Give a precise meaning of the statement: " (x_n) converges".	[2]
(b) Show that if both (x_n) and (y_n) converge then $(x_n - y_n)$ converges.	[4]
A3. (a) Give a precise of the statement: "a function $f : [a, b] \to \mathbb{R}$ is is con $c \in (a, b)$ ".	ntinuous at [2]
(b) Show that if both functions $f, g : [0, 1] \to \mathbb{R}$ are continuous at $c \in f - g$ is continuous at c .	(0, 1) then [4]
A4. (a) Precisely explain the statement: "a real number α is the derivate of $f:[a,b] \to \mathbb{R}$ ".	a function [2]
(b) State the mean value theorem for derivatives.	[2]
(c) Give an example of two functions $f, g: [-1, 1] \to \mathbb{R}$ that are both not dia at $x = 0$ but such that fg is differentiable at $x = 0$. Justify your answer	
 A5. (a) Precisely explain the following statements about a series ∑a_n in ℝ (i) ∑a_n is convergent. (ii) ∑a_n is absolutely convergent. (b) Prove that if ∑a_n converges then lim(a_n) = 0. 	[2] [2] [4]
A6. Use the Riemann criterion to show that the function $f : [a, b] \to \mathbb{R}$ defined $f(x) = \begin{cases} 1 & \text{when } x \in [2, 1) \\ 2 & \text{when } x = 1 \end{cases}$	by
is integrable and $\int_0^1 f = 1$.	[6]
2	

		120
	SECTION B (60 marks)	
Cand	lidates may attempt TWO questions being careful to number them B7 to B11.	
B7.	Let S be a non-empty bounded set in \mathbb{R} .	
	(a) Let $u, v \in \mathbb{R}$. Precisely explain the statement: " $u = \sup S$ and $v = \inf S$ ".	. [4]
	(b) Let A, B be bounded non-empty subsets of \mathbb{R} , and let	
	$A + B := \{a + b : a \in A, b \in B\}$. Prove that $\sup(A + B) = \sup A + \sup A + \sup A + \inf B$.	b B and [8]
	(c) Precisely explain each of the following statements.	
	(i) S has a maximum in \mathbb{R} .	[2]
	(ii) S is bounded above.	[2]
	(d) Prove that if S has a maximum in \mathbb{R} then S is bounded above.	[4]
B8.	(a) Precisely explain each of the following statements about a sequence (x_n)	in R.
	(i) (x_n) is bounded below.	[2]
	(ii) (x_n) is bounded above.	[2]
	(iii) (x_n) is decreasing.	[2]
	(iv) $\lim(x_n)$ exists.	[2
	(b) Let $x_1 = 2$ and let $7x_{n+1} = 2x_n^2 + 3$ for $n = 1, 2, 3,$	
	(i) Show that (x_n) is bounded below by $\frac{1}{2}$ and bounded above by 3.	[5]
	(ii) Also show that (x_n) is decreasing.	[5
	(iii) Find $\lim(x_n)$.	[2]
B9.	(a) Let $f, g: [a, b] \to \mathbb{R}$ be functions, let $k \in \mathbb{R}$ and let $c \in (a, b)$.	
	(i) Give a precise meaning of the statement: $\lim_{x\to c} f$ exists.	[2]
	(ii) Show that if both $\lim_{x\to c} f$ and $\lim_{x\to c} (f+g)$ exist then $\lim_{x\to c} g$ exists.	[4]
	(iii) Show that if $\lim_{x \to c} f$, $\lim_{x \to c} g$ exist then $\lim_{x \to c} fg = \lim_{x \to c} f \lim_{x \to c} g$.	[4]
	(iv) Give an example of f, c for which $\lim_{x \to c} f$ does not exist.	[2]
	(b) State (Bolzano's) Intermediate Value Theorem.	[2]
	(c) Use the Intermediate Value Theorem to show that equation $\log x = 2 - $ solution in the interval [1, 2].	
	(d) Give an example of distinct functions $f, g: [-1, 1] \to \mathbb{R}$ that are both not uous at $x = 0$ and yet $f - g$ is continuous at $x = 0$.	
	•	

.

٨

121 B10. (a) Let $f:[a,b] \to \mathbb{R}$ be a function, and let $c \in (a,b)$. Precisely explain each of the following statements. (i) A real number α is the left derivative of f at c. [2](ii) A real number β is the right derivative of f at c. [2] (b) Let $f: [-1,1] \to \mathbb{R}$ be a function defined by $f(x) = \begin{cases} 1 - x & \text{for } x \ge 0\\ e^{-x} & \text{otherwise} \end{cases}$ (i) Show that f is differentiable at x = 0. [4](ii) Is f continuous at x = 0? Justify your answer. [2](c) State the Mean Value Theorem for derivatives. [2] (d) Use the Mean Value Theorem to prove the following. (i) $|\sin x| \le |x|, \forall x \in \mathbb{R}.$ [4](ii) The polynomial $p(x) = x^3 + ax + b$ (with a > 0) has exactly one real root. [4] B11. (a) Prove that if a series in \mathbb{R} is absolutely convergent then it is convergent. [4] (b) Is the converse of the previous statement true? Justify your answer. [2](c) If $\sum a_n$ is absolutely convergent and (b_n) is a bounded sequence, then show that $\sum a_n b_n$ is absolutely convergent. [4] (d) Let function $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 2 & \text{if } x = 0\\ 1 & \text{if } x \in (0,1) \\ 3 & \text{if } x = 1 \end{cases}$ Show that f is integrable on [0, 1] and evaluate its integral. [10]END OF QUESTION PAPER 4