UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2013/2014	$\begin{gathered} 118 \\ \text { M } 331 \end{gathered}$
BSc. /BEd. /B.A.S.S II	
TITLE OF PAPER : Real Analysis	
COURSE NUMBER : M 331	
TIME ALLOWED $: 3$ HOURS	
SPECIAL REQUIREMENTS : NONE	
Instructions (a) Candidates may attempt: (i) ALL questions in Section A and (ii) At most THREE questions in Section B. (b) Each question should start on a fresh page.	
1	

Candidates may attempt ALL questions being careful to number them A 1 to A6.

A1. (a) Find all $x \in \mathbb{R}$ that satisfy the inequality $3 x<|x-2|$.
(b) State the infimum property for a non-empty subset of \mathbb{R}.
(c) Does the set $\{x \in \mathbb{R}:|x+1|+|x+2|<3\}$ have an infimum? Justify your answer.

A2. Let $\left(x_{n}\right),\left(y_{n}\right)$ be sequences in \mathbb{R}.
(a) Give a precise meaning of the statement: " $\left(x_{n}\right)$ converges".
(b) Show that if both $\left(x_{n}\right)$ and $\left(y_{n}\right)$ converge then $\left(x_{n}-y_{n}\right)$ converges.
[4]

A3. (a) Give a precise of the statement: "a function $f:[a, b] \rightarrow \mathbb{R}$ is is continuous at $c \in(a, b)$ ".
(b) Show that if both functions $f, g:[0,1] \rightarrow \mathbb{R}$ are continuous at $c \in(0,1)$ then $f-g$ is continuous at c.

A4. (a) Precisely explain the statement: "a real number α is the derivate of a function $f:[a, b] \rightarrow \mathbb{R}^{\prime \prime}$.
(b) State the mean value theorem for derivatives.
(b) State the mean value theorem for derivatives. [2]
(c) Give an example of two functions $f, g:[-1,1] \rightarrow \mathbb{R}$ that are both not differentiable at $x=0$ but such that $f g$ is differentiable at $x=0$. Justify your answer. [2]

A5. (a) Precisely explain the following statements about a series $\sum a_{n}$ in \mathbb{R}
(i) $\sum a_{n}$ is convergent.
(ii) $\sum a_{n}$ is absolutely convergent.
(b) Prove that if $\sum a_{n}$ converges then $\lim \left(a_{n}\right)=0$.

A6. Use the Riemann criterion to show that the function $f:[a, b] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}1 & \text { when } x \in[2,1) \\ 2 & \text { when } x=1\end{cases}
$$

is integrable and $\int_{0}^{1} f=1$.

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B7 to B11.

B7. Let S be a non-empty bounded set in \mathbb{R}.
(a) Let $u, v \in \mathbb{R}$. Precisely explain the statement: " $u=\sup S$ and $v=\inf S$ ".
(b) Let A, B be bounded non-empty subsets of \mathbb{R}, and let $A+B:=\{a+b: a \in A, b \in B\}$. Prove that $\sup (A+B)=\sup A+\sup B$ and $\inf (A+B)=\inf A+\inf B$.
(c) Precisely explain each of the following statements.
(i) S has a maximum in \mathbb{R}.
(ii) S is bounded above.
[2]
(d) Prove that if S has a maximum in \mathbb{R} then S is bounded above.

B8. (a) Precisely explain each of the following statements about a sequence $\left(x_{n}\right)$ in \mathbb{R}.
(i) $\left(x_{n}\right)$ is bounded below.
(ii) $\left(x_{n}\right)$ is bounded above.
(iii) $\left(x_{n}\right)$ is decreasing.
(iv) $\lim \left(x_{n}\right)$ exists.
(b) Let $x_{1}=2$ and let $7 x_{n+1}=2 x_{n}^{2}+3$ for $n=1,2,3, \ldots$
(i) Show that $\left(x_{n}\right)$ is bounded below by $\frac{1}{2}$ and bounded above by 3 .
(ii) Also show that $\left(x_{n}\right)$ is decreasing.
(iii) Find $\lim \left(x_{n}\right)$.

B9. (a) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be functions, let $k \in \mathbb{R}$ and let $c \in(a, b)$.
(i) Give a precise meaning of the statement: $\lim _{x \rightarrow c} f$ exists.
(ii) Show that if both $\lim _{x \rightarrow c} f$ and $\lim _{x \rightarrow c}(f+g)$ exist then $\lim _{x \rightarrow c} g$ exists.
(iii) Show that if $\lim _{x \rightarrow c} f, \lim _{x \rightarrow c} g$ exist then $\lim _{x \rightarrow c} f g=\lim _{x \rightarrow c} f \lim _{x \rightarrow c} g$.
(iv) Give an example of f, c for which $\lim _{x \rightarrow c} f$ does not exist. [2]
(b) State (Bolzano's) Intermediate Value Theorem.
(c) Use the Intermediate Value Theorem to show that equation $\log x=2-x$ has a solution in the interval [1,2].
(d) Give an example of distinct functions $f, g:[-1,1] \rightarrow \mathbb{R}$ that are both not continuous at $x=0$ and yet $f-g$ is continuous at $x=0$.

B10. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be a function, and let $c \in(a, b)$. Precisely explain each of the following statements.
(i) A real number α is the left derivative of f at c.
(ii) A real number β is the right derivative of f at c.
(b) Let $f:[-1,1] \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{aligned}
1-x & \text { for } x \geq 0 \\
e^{-x} & \text { otherwise }
\end{aligned}\right.
$$

(i) Show that f is differentiable at $x=0$.
(ii) Is f continuous at $x=0$? Justify your answer.
(c) State the Mean Value Theorem for derivatives.
(d) Use the Mean Value Theorem to prove the following.
(i) $|\sin x| \leq|x|, \forall x \in \mathbb{R}$.
(ii) The polynomial $p(x)=x^{3}+a x+b$ (with $a>0$) has exactly one real root. [4]

B11. (a) Prove that if a series in \mathbb{R} is absolutely convergent then it is convergent. [4]
(b) Is the converse of the previous statement true? Justify your answer.
(c) If $\sum a_{n}$ is absolutely convergent and $\left(b_{n}\right)$ is a bounded sequence, then show that $\sum a_{n} b_{n}$ is absolutely convergent.
(d) Let function $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}2 & \text { if } x=0 \\ 1 & \text { if } x \in(0,1) \\ 3 & \text { if } x=1\end{cases}
$$

Show that f is integrable on $[0,1]$ and evaluate its integral.

END OF QUESTION PAPER

