UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, 2013/2014

B.Sc. III

Title of Paper: Dynamics IICourse Number: M355Time Allowed: Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer ALL questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

122

SECTION A [40 Ma	rks]: ANSWER ALL QUESTIONS	123
A1. Give definition and exa	mple of	
a) generalized coordina	tes,	(2)
b) non-holonomic syste	m,	(2)
c) scleronomic system,		(2)
d) conservative system,		(2)
d) virtual displacement		(2)
A2. A particle of mass m is	hanged on a weightless spring of stiffness c .	
a) Derive Lagrange equ	nation,	(2)
b) Solve it,		(2)
c) Introduce generalized	d momentum,	(2)
d) Construct Hamilton	ian,	(2)
e) Write Hamilton equa	ations.	(2)
A3. In polar coordinates $(r$	(θ)	
$L=rac{1}{2}m(\dot{r}^2+r^2\dot{ heta}^2)-\Pi$	$l(r)$. Show that generalized momentum p_{θ} is conserved.	(3)
A4. Check if the transform	aton	غر
Q = q - 2, P = p + 2	2q-3 is canonical.	(3)
A5. Let A, B and C be arb	itrary functions of q, p, t . Prove that	
[A, B+C] = [A, B] + [[A, C] in the usual notations.	(4)
A6. In the calculus of varia	tions define boundary conditions	4
a) essential,		
b) natural,		(2,2)
A7. Find the extremals of		
$V[y(x)] = \int_0^{rac{\pi}{2}} [(y')^2 - y_{0}]^2$	$y^2]dx, y(0)$ is free,	
$y(rac{\pi}{2})=0.$		(4)
A8. For the functional		
$V[y(x)] = \int_{x_0}^{x_1} F(x, y(x)) dx$	$(x), y'(x) \cdots, y^{(n)}(x)) dx$	
write Euler-Poisson equ	lation.	. (2)

.

1

•

.

QUESTION B1 [20 Marks]

B1. (a) Prove that the work done on a system is related to generalized forces and corresponding generalized coordinates by

$$Q_i = \frac{\partial W}{\partial q_i}, \quad i = \overline{1, n}.$$
(5)

(b) Prove the Interchange of d and ∂ Lemma

$$\frac{d}{dt} \left(\frac{\partial \bar{\tau}_{\nu}}{\partial q_i} \right) = \frac{\partial \dot{\bar{\tau}}_{\nu}}{\partial q_i} \tag{5}$$

(c) Two particles of masses m_1 and m_2 are connected by a light inextensible string of length l and negligible mass which passes over a frictionless pulley. Set up the Lagrangian and find the acceleration of mass m_1 . (4)

(d) The Lagragian for a certain dynamical system is given by

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - \frac{1}{2}c(x^2 + y^2) - \frac{1}{2}c(y - x)^2.$$

Write down Lagrange's equations. (6)

QUESTION B2 [20 Marks]

B2. (a) Derive Lagrange's equations for the holonomic, scleronomic system with n degrees of freedom.

Hint: You may use results from question B1(b) and the cancellation of dot property (10)lemma.

(b) Derive Lagrange's equations for the double mathematical pendulum with the (10)masses m_1 and m_2 and the strings of the length l_1 and l_2 , respectively.

QUESTION B3 [20 Marks]

B3. (a) Using just definition of Hamiltonian H(q, p),

(i) derive Hamilton's equations and hence

(ii) Show that
$$\frac{dH}{dt} = \frac{\partial H}{\partial t}$$
. (4,3)

(b) Consider a dynamic variable

A(q, p, t), and let H(q, p, t) be a Hamiltonian of a system.

(i) Prove that
$$\frac{dA}{dt} = \frac{\partial A}{\partial t} + [A, H],$$

and hence

(ii) Show that $A = q_1 p_2 - q_2 p_1$ is a constant of motion if

$$H = \frac{1}{2}(p_1^2 + p_2^2) + \frac{1}{2}\omega^2(q_1^2 + q_2^2).$$
(3,4)

(c) Derive Hamilton equations in Poisson formulation.

(6)

QUESTION B4 [20 Marks]

B4. (a) Consider a functional

$$V[y(x)] = \int_{x_0}^{x_1} F(x, y(x), y'(x)) dx,$$

subject to the boundary conditions $y(x_0) = y_0, y(x_1) = y_1$. Show that if y(x) is an extremal, then it satisfies Euler equation. (7)

(b) Find extremals of

$$V[(y(x)] = \int_{x_0}^{x_1} (y + xy') dx, \quad y(x_0) = y_0, y(x_1) = y_1.$$
(4)

- (c) Let $F(y, y') = y\sqrt{1 + (y')^2}$. Construct
- (i) Euler equation,
- (ii) Beltrami identity.

QUESTION B5 [20 Marks]

B5. (a) Find the extremals of

(i)
$$V[y(x), z(x)] = \int_0^1 [(y')^2 + (z')^2 + \cos x] dx$$

 $y(0) = 1, \quad z(0) = 2, \quad y(1) = 2, \quad z(1) = 1.$
(ii) $V[y(x)] = \int_{x_0}^x [2xy + (y''')^2] dx$ (6,8)
(b) Find Ostrogradski's equation for the following functional

$$V[z(x,y)] = \int \int_{\Delta} \left[\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} + 2g(x,y)z \right] dxdy,$$

where z(x, y) is known on the boundary of region Δ . (6)

__END OF EXAMINATION PAPER_

[5,4]