B.Sc. III

```
Title of Paper : Dynamics II
Course Number : M355
Time Allowed : Three (3) Hours
```


Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

A1. Give definition and example of
a) generalized coordinates,
b) non-holonomic system,
c) scleronomic system,
d) conservative system,
d) virtual displacement.

A2. A particle of mass m is hanged on a weightless spring of stiffuess c.
a) Derive Lagrange equation,
b) Solve it,
c) Introduce generalized momentum,
d) Construct Hamiltonian,
e) Write Hamilton equations.

A3. In polar coordinates (r, θ)
$L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\Pi(r)$. Show that generalized momentum p_{θ} is conserved.
A4. Check if the transformaton $Q=q-2, \quad P=p+2 q-3$ is canonical.

A5. Let A, B and C be arbitrary functions of q, p, t. Prove that $[A, B+C]=[A, B]+[A, C]$ in the usual notations.

A6. In the calculus of variations define boundary conditions
a) essential,
b) natural,

A7. Find the extremals of
$V[y(x)]=\int_{0}^{\frac{\pi}{2}}\left[\left(y^{\prime}\right)^{2}-y^{2}\right] d x, \quad y(0)$ is free,
$y\left(\frac{\pi}{2}\right)=0$.
A8. For the functional
$V[y(x)]=\int_{x_{0}}^{x_{1}} F\left(x, y(x), y^{\prime}(x) \cdots, y^{(n)}(x)\right) d x$ write Euler-Poisson equation.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B1 [20 Marks]

B1. (a) Prove that the work done on a system is related to generalized forces and corresponding generalized coordinates by
$Q_{i}=\frac{\partial W}{\partial q_{i}}, \quad i=\overline{1, n}$.
(b) Prove the Interchange of d and ∂ Lemma
$\frac{d}{d t}\left(\frac{\partial \bar{r}_{\nu}}{\partial q_{i}}\right)=\frac{\partial \dot{\bar{r}}_{\nu}}{\partial q_{i}}$
(c) Two particles of masses m_{1} and m_{2} are conncected by a light inextensible string of length l and negligible mass which passes over a frictionless pulley. Set up the Lagrangian and find the acceleraion of mass m_{1}.
(d) The Lagragian for a certain dynamical system is given by
$L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-\frac{1}{2} c\left(x^{2}+y^{2}\right)-\frac{1}{2} c(y-x)^{2}$.
Write down Lagrange's equations.

QUESTION B2 [20 Marks]

B2. (a) Derive Lagrange's equations for the holonomic, scleronomic system with n degrees of freedom.
Hint: You may use results from question B 1 (b) and the cancellation of dot property lemma.
(b) Derive Lagrange's equations for the double mathematical pendulum with the masses m_{1} and m_{2} and the strings of the length l_{1} and l_{2}, respectively.

QUESTION B3 [20 Marks]

B3. (a) Using just definition of Hamiltonian $H(q, p)$,
(i) derive Hamilton's equations and hence
(ii) Show that $\frac{d H}{d t}=\frac{\partial H}{\partial t}$.
(b) Consider a dynamic variable
$A(q, p, t)$, and let $H(q, p, t)$ be a Hamiltonian of a system.
(i) Prove that $\frac{d A}{d t}=\frac{\partial A}{\partial t}+[A, H]$,
and hence
(ii) Show that $A=q_{1} p_{2}-q_{2} p_{1}$ is a constant of motion if
$H=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{1}{2} \omega^{2}\left(q_{1}^{2}+q_{2}^{2}\right)$.
(c) Derive Hamilton equations in Poisson formulation.

QUESTION B4 [20 Marks]

B4. (a) Consider a functional
$V[y(x)]=\int_{x_{0}}^{x_{1}} F\left(x, y(x), y^{\prime}(x)\right) d x$,
subject to the boundary conditions $y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1}$. Show that if $y(x)$ is an extremal,then it satisfies Euler eqution.
(b) Find extremals of
$V\left[(y(x)]=\int_{x_{0}}^{x_{1}}\left(y+x y^{\prime}\right) d x, \quad y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1}\right.$.
(c) Let $F\left(y, y^{\prime}\right)=y \sqrt{1+\left(y^{\prime}\right)^{2}}$. Construct
(i) Euler equation,
(ii) Beltrami identity.

QUESTION B5 [20 Marks]

B5. (a) Find the extremals of
(i) $V[y(x), z(x)]=\int_{0}^{1}\left[\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}+\cos x\right] d x$
$y(0)=1, \quad z(0)=2, \quad y(1)=2, \quad z(1)=1$.
(ii) $V[y(x)]=\int_{x_{0}}^{x}\left[2 x y+\left(y^{\prime \prime \prime}\right)^{2}\right] d x$
(b) Find Ostrogradski's equation for the following functional
$V[z(x, y)]=\iint_{\Delta}\left[\frac{\partial z}{\partial x} \frac{\partial z}{\partial y}+2 g(x, y) z\right] d x d y$,
where $z(x, y)$ is known on the boundary of region Δ.

