University of Swaziland

Final Examination, December 2013

B.A.S.S., B.Sc, B.Eng, B.Ed

Title of Paper : Partial Differential Equations

Course Number : M415

<u>**Time Allowed</u>** : Three (3) Hours</u>

Instructions

- 1. This paper consists of TWO sections.
 - a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
 - b. SECTION B: 60 MARKS Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.
- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Non programmable calculators may be used (unless otherwise stated).
- 5. Special requirements: None.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

- 1.1. Define a boundary condition and give three different types of boundary conditions. [4]
- 1.2. Determine the region in which the given partial differential equations are hyperbolic, parabolic or elliptic. (u = u(x, y)).
 - (a) $y^2 u_{xx} 2u_{xy} + u_{yy} = u_x + 6y.$ [4]
 - (b) $\sin^2 x u_{xx} \sin(2x) u_{xy} + \cos^2 x u_{yy} = 1.$ [3]

1.3. Solve the following partial differential equations, (u = u(x, y)).

- (a) $u_{xx} + u = 0.$ [4]
- (b) $u_{xy} = 0.$ [3]
- (c) $xu_x yu_y = 1 xyu.$ [5]
- 1.4. The cartesian coordinates $(x, y) \in \mathbb{R}^2$ and polar coordinates $(r, \theta) \in [0, \infty) \times [0, 2\pi]$ in the plane are related by $x = r \cos \theta$ and $y = r \sin \theta$. Transform the equation

$$xu_y - yu_x = 0$$

to polar coordinates and find the general solution. [11]

1.5. Find the partial differential satisfied by $u(x,y) = f(x)g(y)_{t}$ [6]

2

SECTION B: ANSWER ANY 3 QUESTIONS 140

2. Use Green's theorem

$$\iint_{\Omega} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy = \oint_{\Gamma} M dx + N dy$$

to show that the solution for the following partial differential equation

$$u_{tt} - c^2 u_{xx} = 0, \quad -\infty < x < +\infty, \quad t > 0$$

 $u(x,0) = f(x)$
 $u_t(x,0) = g(x)$

is given by

$$u(x,t) = \frac{f(x-ct) + f(x+ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds.$$

(Ω is the characteristic triangle and Γ is the boundary of the characteristic triangle).

Hence find the solution for the following partial differential equation

 $egin{aligned} u_{tt} - u_{xx} &= 0, \qquad -\infty < x < +\infty, \quad t > 0 \\ u(x,0) &= x \\ u_t(x,0) &= e^x \end{aligned}$

3. Reduce to canonical form

$$u_{xx} + u_{xy} - 2u_{yy} + 1 = 0,$$

and hence find the solution which passes through the curve

$$\Gamma: \quad u = u_y = x \text{ on } y = 0.$$

[20]

[12]

[20]

ł

4. Consider the function

$$f(x) = \begin{cases} -1, & -\pi \le x < 0; \\ 0, & x = 0; \\ +1, & 0 < x \le \pi. \end{cases} \qquad f(x + 2\pi) = f(x).$$

(a) Find the fourier series expansion.

(b) Use Parseval's identity to find the value of the sum

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \,\mathbf{4}$$
[8]

1VI

4

5. Solve the following partial differential equations using the method of Laplace transforms

(a)
$$u_{xt} + \sin t = 0$$
, $u(x, 0) = x$, $u(0, t) = 0$. [10]

(b)
$$xu_x + u_t = xt$$
, $u(x, 0) = 0$, $u(0, t) = 0$. [10]

6. Show that the initial value problem with non-homogeneous boundary conditions

$$u_t - u_{xx} = 0, \quad 0 < x < L, \quad t > 0$$

$$u(0,t) = T_1, \quad t \ge 0$$

$$u(L,t) = T_2, \quad t \ge 0$$

$$u(x,0) = f(x), \quad 0 \le x \le 1$$

can be transformed to an initial value problem with homogeneous boundary conditions. Hence find the general solution of initial value problem using separation of variables. [20]

Table of Laplace Transforms

f(t)	F(s)
t ⁿ	$rac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{rac{\pi}{s}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
$\frac{1}{a-b} \left(e^{at} - e^{bt} \right)$	$\frac{1}{(s-a)(s-b)}$
$\frac{1}{a-b} \left(a e^{at} - b e^{bt} \right)$	$\frac{s}{(s-a)(s-b)}$
$\sin(at)$	$rac{a}{s^2+a^2}$
$\cos(at)$	$rac{s}{s^2+a^2}$
$\sin(at) - at\cos(at)$	$\frac{2a^3}{(s^2+a^2)^2}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$
$\sinh(at)$	$rac{a}{s^2-a^2}$
$\cosh(at)$	$rac{s}{s^2-a^2}$
$\sin(at)\sinh(at)$	$\frac{2a^2}{s^4 + 4a^4}$
$\frac{d^n f}{dt^n}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \cdots - f^{(n-1)}(0)$