University of Swaziland

Final Examination, December 2013

B.A.S.S. , B.Sc, B.Eng, B.Ed

Title of Paper : Partial Differential Equations
Course Number : M415
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given by THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

1.1. Define a boundary condition and give three different types of boundary conditions.
1.2. Determine the region in which the given partial differential equations are hyperbolic, parabolic or elliptic. ($u=u(x, y)$).
(a) $y^{2} u_{x x}-2 u_{x y}+u_{y y}=u_{x}+6 y$.
(b) $\sin ^{2} x u_{x x}-\sin (2 x) u_{x y}+\cos ^{2} x u_{y y}=1$.
1.3. Solve the following partial differential equations, $(u=u(x, y))$.
(a) $u_{x x}+u=0$.
(b) $u_{x y}=0$.
(c) $x u_{x}-y u_{y}=1-x y u$.
1.4. The cartesian coordinates $(x, y) \in \mathbb{R}^{2}$ and polar coordinates $(r, \theta) \in[0, \infty) \times$ $[0,2 \pi]$ in the plane are related by $x=r \cos \theta$ and $y=r \sin \theta$. Transform the equation

$$
x u_{y}-y u_{x}=0
$$

to polar coordinates and find the general solution.
1.5. Find the partial differential satisfied by $u(x, y)=f(x) g(y)$ k

SECTION B: ANSWER ANY 3 QUESTIONS

2. Use Green's theorem

$$
\iint_{\Omega}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\oint_{\Gamma} M d x+N d y
$$

to show that the solution for the following partial differential equation

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=0, \quad-\infty<x<+\infty, \quad t>0 \\
& u(x, 0)=f(x) \\
& u_{t}(x, 0)=g(x)
\end{aligned}
$$

is given by

$$
u(x, t)=\frac{f(x-c t)+f(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

(Ω is the characteristic triangle and Γ is the boundary of the characteristic triangle).
Hence find the solution for the following partial differential equation

$$
\begin{aligned}
& u_{t t}-u_{x x}=0, \quad-\infty<x<+\infty, \quad t>0 \\
& u(x, 0)=x \\
& u_{t}(x, 0)=e^{x}
\end{aligned}
$$

3. Reduce to canonical form

$$
u_{x x}+u_{x y}-2 u_{y y}+1=0
$$

and hence find the solution which passes through the curve

$$
\Gamma: \quad u=u_{y}=x \text { on } y=0
$$

4. Consider the function

$$
f(x)=\left\{\begin{array}{ll}
-1, & -\pi \leq x<0 ; \\
0, & x=0 ; \\
+1, & 0<x \leq \pi
\end{array} \quad f(x+2 \pi)=f(x)\right.
$$

(a) Find the fourier series expansion.
(b) Use Parseval's identity to find the value of the sum

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
$$

5. Solve the following partial differential equations using the method of Laplace transforms
(a) $u_{x t}+\sin t=0, \quad u(x, 0)=x, u(0, t)=0$.
(b) $x u_{x}+u_{t}=x t, \quad u(x, 0)=0, u(0, t)=0$.
6. Show that the initial value problem with non-homogeneous boundary conditions

$$
\begin{aligned}
& u_{t}-u_{x x}=0, \quad 0<x<L, \quad t>0 \\
& u(0, t)=T_{1}, \quad t \geq 0 \\
& u(L, t)=T_{2}, \quad t \geq 0 \\
& u(x, 0)=f(x), \quad 0 \leq x \leq 1
\end{aligned}
$$

can be transformed to an initial value problem with homogeneous boundary conditions. Hence find the general solution of initial value problem using separation of variables.

Table of Laplace Transforms

$f(t)$	$F(s)$
t^{n}	$\frac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$
$e^{a t}$	$\frac{1}{s-a}$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$
$\frac{1}{a-b}\left(e^{a t}-e^{b t}\right)$	$\frac{1}{(s-a)(s-b)}$
$\frac{1}{a-b}\left(a e^{a t}-b e^{b t}\right)$	$\frac{s}{(s-a)(s-b)}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
$\sin (a t)-a t \cos (a t)$	$\frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}}$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$
$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$
$\sin (a t) \sinh (a t)$	$\frac{2 a^{2}}{s^{4}+4 a^{4}}$
$\frac{d^{n} f}{d t^{n}}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$

