B.Sc. IV, BASS IV, BED. IV

Title of Paper : Abstract Algebra II
Course Number : M423
Time Allowed : Three (3) Hours
\section*{Instructions}

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1. (a) Define
(i) An ideal N in a ring R
(ii) A divisor of zero in a ring R
(iii) The characteristic of a ring R
(iv) Unity in a ring R
(v) A unit in a ring R
(b) Prove that in the ring \mathbb{Z}_{n}
(i) the divisor of zero are those elements that are not relatively prime to n.
(ii) the elements that are relatively prime to n cannot be divisers of zero

A2. (a) Give a definition of the following
(i) an intergral domain
(ii) a field
(b) Prove that a finite integral domain is a field.
(c) Give an example of a integral domain that is not a field.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

(a) Show that if D is an integral domain then the ring $D[x]$ of polynomials is also an integral domain.
(b) The polynomial $x^{4}+2 x^{3}+x^{2}+x+1$ has a linear factor in $\mathbb{Z}_{3}[x]$. Find the factorization into irreducible polynomials in $\mathbb{Z}_{3}[x]$.
(c) Show that $x=\sqrt{1-\sqrt{2}}$ is algebraic over \mathbb{Q}. Find the minimum polynomial and the degee of α
(i) over \mathbb{R}
(ii) over \mathbb{Q}.

QUESTION B4 [20 Marks]
(a) Show that the polynomial $x^{2}+x+1$ is irreducible in $\mathbb{Z}_{2}[x]$
(b) Let α be a zero of $x^{2}+x+1$ in the extension field of \mathbb{Z}_{2} i.e, $E=\mathbb{Z}_{2}(\alpha)$.
(i) Write down all the elements of $\mathbb{Z}_{2}(\alpha)$
(ii) Construct the multiplication table for $\mathbb{Z}_{2}(\alpha)$, showing the inverses for each non zero element.
(a) Which of the following sets is a ring with the usual operations of addition and multiplication? In each case, either prove that it is a ring or explain why it is not
(i) the set $\{1,-1, i,-i\}$
(ii) The set $\mathbb{Z}[\sqrt{5}]=\{a+b \sqrt{5}: a, b \in \mathbb{Z}\}$.
(b) Show that the rings \mathbb{Z} and $3 \mathbb{Z}$ are NOT isomorphic.
(c) Show that \mathbb{Z}_{n} is a field $\Leftrightarrow n$ is prime

QUESTION B6 [20 Marks]

(a) State Eisenstein's criterion for irreducibility
(b) Use Eisenstein's criterion to show that $f(x)=26 x^{5}-5 x^{4}+25 x^{2}-10$ is irreducible over Q
(c) Find all zeros of $x^{3}+2 x+2$ in \mathbb{Z}_{7}
(d) Find the quotient and the remainder when $f(x)$ is divided by $d(x)$ in $\mathbb{Z}_{5}[x]$ if $f(x)=x^{4}-3 x^{3}+2 x^{2}+4 x-1$ and $d(x)=x^{2}-2 x+3$

QUESTION B7 [20 Marks]

(a) Prove that if R is a ring with unity and H is an ideal of R containing a unit, then $N=R$
(b) Let R be a commutative ring. For an arbitrary element n in R, form the set
$N=\{n r: r \in R\}$
Prove that N is an ideal in R.

