UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, 2013/2014

B.Sc. IV, BASS IV, BED. IV

Title of Paper : Abstract Algebra II

Course Number : M423

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer ALL questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1. (a) Define

- (i) An ideal N in a ring R
- (ii) A divisor of zero in a ring R
- (iii) The characteristic of a ring R
- (iv) Unity in a ring R
 (v) A unit in a ring R
 (b) Prove that in the ring Z_n
 (i) the divisor of zero are those elements that are not relatively prime to n.
 (ii) the elements that are relatively prime to n cannot be divisers of zero
 (10)
 A2. (a) Give a definition of the following

149

(6)

(6)

(i) an intergral domain
(ii) a field
(b) Prove that a finite integral domain is a field.
(c) Give an example of a integral domain that is not a field.
(4)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

- (a) Show that if D is an integral domain then the ring D[x] of polynomials is also an integral domain. (7)
- (b) The polynomial x⁴+2x³+x²+x+1 has a linear factor in Z₃[x]. Find the factorization into irreducible polynomials in Z₃[x].
- (c) Show that $x = \sqrt{1 \sqrt{2}}$ is algebraic over \mathbb{Q} . Find the minimum polynomial and the degree of α
 - (i) over \mathbb{R}
 - (ii) over \mathbb{Q} .

QUESTION B4 [20 Marks]

- (a) Show that the polynomial $x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$ (6)
- (b) Let α be a zero of $x^2 + x + 1$ in the extension field of \mathbb{Z}_2 i.e, $E = \mathbb{Z}_2(\alpha)$.
 - (i) Write down all the elements of $\mathbb{Z}_2(\alpha)$
 - (ii) Construct the multiplication table for Z₂(α), showing the inverses for each non zero element.
 (8)

1

QUESTION B5 [20 Marks]

- (a) Which of the following sets is a ring with the usual operations of addition and multiplication? In each case, either prove that it is a ring or explain why it is not
 - (i) the set $\{1, -1, i, -i\}$ (ii) The set $\mathbb{Z}[\sqrt{5}] = \{a + b\sqrt{5} : a, b \in \mathbb{Z}\}$. (10)

150

- (b) Show that the rings \mathbb{Z} and $3\mathbb{Z}$ are NOT isomorphic. (5)
- (c) Show that \mathbb{Z}_n is a field $\Leftrightarrow n$ is prime (5)

QUESTION B6 [20 Marks]

(a)	State Eisenstein's criterion for irreducibility	[3]
(b)	Use Eisenstein's criterion to show that $f(x) = 26x^5 - 5x^4 + 25x^2 - 10$	
	is irreducible over Q	(4)
(c)	Find all zeros of $x^3 + 2x + 2$ in \mathbb{Z}_7	(5)
(d)	Find the quotient and the remainder when $f(x)$ is divided by $d(x)$	
	in $\mathbb{Z}_5[x]$ if $f(x) = x^4 - 3x^3 + 2x^2 + 4x - 1$ and $d(x) = x^2 - 2x + 3$	(8)

QUESTION B7 [20 Marks]

(a)	Prove that if R is a ring with unity and H is an ideal of R containing a unit, then $N = R$	(10)
(b)	Let R be a commutative ring. For an arbitrary element n in R , form the set	
	$N=\{nr:r\in R\}$	
	Prove that N is an ideal in R .	[10]

__END OF EXAMINATION PAPER_