Supplementary Examination, 2013/2014

B.Sc. IV, BASS IV, BED. IV

Title of Paper : Abstract Algebra II
Course Number : M423
Time Allowed : Three (3) Hours
\section*{Instructions}

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1. (a) (i) Definean ideal N of a ring R.
(ii) Find all ideals N of \mathbb{Z}_{12} and all maximal ideal of \mathbb{Z}_{18}
(b) (i) Prove that every finite integral domain is a field.
(ii) Show that for a field F, the set of all matrices of the form
$\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)$ for $a, b \in F$
is a right ideal but not a left ideal of $M_{2}(F)$.
A2. (a) In a ring \mathbb{Z}_{n} show that
(i) divisor c of zero are those elements that are NOT relatively prime to n.
(ii) elements that are relatively prime can't be zero divisors
(b) (i) Given an example of a ring R with unity 1 that has a subring \mathbb{R}^{1} with unity 1^{1}, where $1 \neq 1^{1}$.
(ii) Describe all units in the ring $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

(a) Let f be a polynomial over \mathbb{Z} which is irreducible over \mathbb{Z}.

Show that f considered as a polynomial over \mathbb{Q} is also irreducible.
(b) Classify each of the given $\alpha \in \mathbb{C}$ as algebraic or transcendantal over the given field F.
If α is algebraic over F, find $\operatorname{deg}(\alpha, F)$
(i) $\alpha=1+i, \quad F=\mathbb{Q}$
(ii) $\alpha=\sqrt{\pi}, \quad F=\mathbb{Q}(\pi)$
(iii) $\alpha=\pi^{2}, \quad F=\mathbb{Q}$
(iv) $\alpha=\pi^{2}, F=\mathbb{Q}(\pi)$
(v) $\alpha=\pi, \quad F=\mathbb{Q}\left(\pi^{3}\right)$

QUESTION B4 [20 Marks]

(a) Prove that if D is an integral domain, then $D[x]$ is also an integral domain.
(b) Decide the irreducibility or otherwise of
(i) $x^{3}-7 x^{2}+3 x+3 \in Q[x]$
(ii) $2 x^{10}-25 x^{3}+10 x^{2}-30 \in \mathbb{Q}[x]$
(a) (i) Show that the ring $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is NOT a field.
(ii) Find a polynomial of degree >0 in $\mathbb{Z}_{4}[x]$ that is a unit.
(b) (i) Show that $(a+b)(a-b)=a^{2}-b^{2}$ for all a and b in a ring R, f if and only if R is commutative
(ii) Show that the rıngs $2 \mathbb{Z}$ and $3 \mathbb{Z}$ are NOT isomorphic.

QUESTION B6 [20 Marks]

(a) Suppose F is a field, f_{n} is an irreducible polynomial over F and g, h are polynomials over F such that f divides $g h$. Show that either f divides g or f divides h.
(b) Let $\varphi_{\alpha}: \mathbb{Z}_{7}[x] \rightarrow Z_{7}$. Evaluate each of the following for the indicated evaluation homomorphism.
(i) $\varphi_{5}\left[\left(x^{3}+2\right)\left(4 x^{2}+3\right)\left(x^{7}+3 x^{2}+1\right)\right]$
(ii) $\varphi_{4}\left[3 x^{106}+5 x^{99}+2 x^{53}\right]$

QUESTION B7 [20 Marks]

(a) Determine whether each of the following polynomials in $\mathbb{Z}[x]$ satifies an Eissenstein criteria for irreducibility
(i) $8 x^{3}+6 x^{2}-9 x+24$
(ii) $2 x^{10}-25 x^{3}+10 x^{2}-30$
(b) Let α be a zero of $x^{2}+1$ in an extension field of \mathbb{Z}_{3}. Give the multiplication and addition tables for the nine elements of $\mathbb{Z}_{3}(\alpha)$.

