UNIVERSITY OF SWAZILAND

Supplementary Examination, 2013/2014

B.Sc. IV, BASS IV, BED. IV

Title of Paper : Abstract Algebra II

Course Number : M423

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:

- a. SECTION A (40 MARKS)
 - Answer **ALL** questions in Section A.
- b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS	152	
A1. (a) (i) Define an ideal N of a ring R .		(5)
(ii) Find all ideals N of \mathbb{Z}_{12} and all maximal ideal of \mathbb{Z}_{18}		(5)
(b) (i) Prove that every finite integral domain is a field.		(5)
(ii) Show that for a field F , the set of all matrices of the form		
$\left(\begin{array}{cc}a&b\\0&0\end{array}\right) \text{ for }a,b\in F$		
is a right ideal but not a left ideal of $M_2(F)$.		(5)
A2. (a) In a ring \mathbb{Z}_n show that		
(i) divisor c of zero are those elements that are NOT relatively prime to n .		(5)
(ii) elements that are relatively prime can't be zero divisors		(5)
(b) (i) Given an example of a ring R with unity 1 that has a subring \mathbb{R}^1		
with unity 1^1 , where $1 \neq 1^1$.		(5)
(ii) Describe all units in the ring $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$		(5)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

(a) Let f be a polynomial over \mathbb{Z} which is irreducible over \mathbb{Z} .	
Show that f considered as a polynomial over \mathbb{Q} is also irreducible.	(10)

(b) Classify each of the given $\alpha \in \mathbb{C}$ as algebraic or transcendantal over the given field F.

If α is algebraic over F, find deg (α, F)

- (i) $\alpha = 1 + i$, $F = \mathbb{Q}$
- (ii) $\alpha = \sqrt{\pi}, \quad F = \mathbb{Q}(\pi)$
- (iii) $\alpha = \pi^2$, $F = \mathbb{Q}$
- (iv) $\alpha = \pi^2, F = \mathbb{Q}(\pi)$
- (v) $\alpha = \pi$, $F = \mathbb{Q}(\pi^3)$ (10)

QUESTION B4 [20 Marks]

- (a) Prove that if D is an integral domain, then D[x] is also an integral domain. (10)
- (b) Decide the irreducibility or otherwise of

(i) $x^3 - 7x^2 + 3x + 3 \in Q[x]$	(5)
------------------------------------	-----

(ii) $2x^{10} - 25x^3 + 10x^2 - 30 \in \mathbb{Q}[x]$

(5)

QUESTION B5 [20 Marks]

- (a) (i) Show that the ring $\mathbb{Z}_2 \times \mathbb{Z}_2$ is NOT a field. (5)
 - (ii) Find a polynomial of degree > 0 in $\mathbb{Z}_4[x]$ that is a unit.
- (b) (i) Show that $(a + b)(a b) = a^2 b^2$ for all a and b in a ring R, f if and only if R is commutative (5)
 - (ii) Show that the rings $2\mathbb{Z}$ and $3\mathbb{Z}$ are NOT isomorphic.

QUESTION B6 [20 Marks]

- (a) Suppose F is a field, f_n is an irreducible polynomial over F and g, h are polynomials over F such that f divides gh. Show that either f divides g or f divides h. [10]
- (b) Let $\varphi_{\alpha} : \mathbb{Z}_{7}[x] \to \mathbb{Z}_{7}$. Evaluate each of the following for the indicated evaluation homomorphism.

(i)
$$\varphi_5[(x^3+2)(4x^2+3)(x^7+3x^2+1)]$$
 (5)

(ii) $\varphi_4[3x^{106} + 5x^{99} + 2x^{53}]$ (5)

QUESTION B7 [20 Marks]

- (a) Determine whether each of the following polynomials in $\mathbb{Z}[x]$ satisfies an Eissenstein criteria for irreducibility
 - (i) $8x^3 + 6x^2 9x + 24$ (5)
 - (ii) $2x^{10} 25x^3 + 10x^2 30$ (5)
- (b) Let α be a zero of $x^2 + 1$ in an extension field of \mathbb{Z}_3 . Give the multiplication and addition tables for the nine elements of $\mathbb{Z}_3(\alpha)$. (10)

END OF EXAMINATION PAPER.

(5)

(5)