UNIVERSITY OF SWAZILAND

160

SUPPLEMENTARY EXAMINATIONS 2013/2014

B.Sc. / B.Ed. / B.A.S.S. IV

TITLE OF PAPER	:	METRIC SPACES
COURSE NUMBER	:	M431
TIME ALLOWED	:	THREE (3) HOURS
<u>INSTRUCTIONS</u>	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWER <u>ALL</u> QUESTIONS IN SECTION A. ANSWER ANY <u>THREE</u> QUESTIONS
SPECIAL REQUIREMENTS	;	IN SECTION B. NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

SECTION A

QUESTION 1

Let (X, d) be a metric space. Define the following:

(a)	the distance from $x \in X$ to a subset $A \subset X$;	[2]
(b)	the diameter of $A \subset X$;	[2]
(c)	the distance between two subsets, A and B , of X ;	[2]
(d)	a bounded subset $A \subset X$;	[2]
(e)	a bounded mapping g from a nonempty set Y to X ;	[2]
(f)	a convergent sequence (x_n) in X;	[2]
(g)	a Cauchy sequence (x_n) in X ;	[2]
(h)	a subspace (Y, d_Y) of (X, d) ;	[2]
(i)	an open ball $B(a,r)$ in (X,d) ;	[2]
(j)	an open subset F of X .	[2]

141

QUESTION 2

162

(a) Can you find a metric space (X, d) where:

- (i) The interval [0, 1] is both open and closed? [2]
- (ii) The interval $[0, \frac{1}{2}]$ is open but not closed? [2]

Justify your answer in each case.

(b) Describe open balls B(a, 3), where a = (2, 3) in \mathbb{R}^2 with respect to the following metrics:

(i)	the Chicago metric;	[3]
(ii)	the London (or UK)-rail metric;	[4]
(iii)	the New York metric;	[4]
(iv)	the Raspberry pickers' metric.	[3]
a :		1.

(c) Give an example of a metric space in ℝ, equipped with the usual metric, such that diam(A°) < diam(A).

SECTION B

QUESTION 1

Let $A \subset \mathbb{R}^2$ be the region bounded by the unit disc centered at the origin. Find diam(A) with each of the following metrics:

(a)	the Max metric;	[4]
(b)	the Chicago metric;	[5]
(c)	the London (or UK)-rail metric;	[3]
(c)	the New York metric;	[4]
(d)	the Raspberry pickers' metric.	[4]

QUESTION 2

(a) Let (X, d) be a metric space, and let (x_n) and (y_n) be two sequences in X such that (y_n) is a Cauchy sequence and $d(x_n, y_n) \to 0$ as $n \to \infty$. Prove that:

(i) (x_n) is a Cauchy sequence in X;	[5	[]
--	----	----

(ii) (x_n) converges to a limit x in X if and only if (y_n) also converges to x in X. [5]

(b) Prove that every Cauchy sequence in a metric space (X, d) is bounded. [4]

(c) Let (X, d) be a metric space, and let d' be the metric on X defined by

$$d'(x,y) = \min\{1, d(x,y)\}.$$

Prove that (x_n) is a Cauchy sequence in (X, d) if and only if (x_n) is a Cauchy sequence in (X, d'). [6]

163

QUESTION 3

- (a) If a sequence (x_n) is convergent and has limit x, prove that every subsequence $(x_{n_k})_{k\geq 1}$ of (x_n) is convergent and has the same limit x. [4]
- (b) Let X = C[0, 1], the set of all continuous functions on [0, 1], and let d be the metric on X defined by

$$d(f,g) = \int_0^1 |f(x) - g(x)| \, \mathrm{d}x.$$

For each $n \in \mathbb{N}$, define f_n by $f_n(x) = x^n$ for all $x \in [0, 1]$.

- (i) Show that the sequence (f_n) converges in X, and find its limit f. [3]
- (ii) Show that the function f in Part (i) is not the pointwise limit of the sequence (f_n) . [3]
- (c) Let d be the metric on $X = \mathcal{C}[a, b]$ defined by

$$d(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|.$$

Let (f_n) be a sequence in $\mathcal{C}[a, b]$, and suppose that (f_n) converges uniformly on [a, b] to some function f.

(i) Prove that f is continuous on [a, b], and hence show that (f_n) converges in (X, d).

(ii) Prove that
$$\int_{a}^{b} f_{n}(x) dx \longrightarrow \int_{a}^{b} f(x) dx$$
 as $n \to \infty$. [5]

QUESTION 4

- (a) Given a function $f:(X, d_1) \longrightarrow (X, d_2)$,
 - (i) When is f said to be continuous in the $\varepsilon \delta$ sense?
 - (ii) Give an equivalent definition in terms of open sets.
 - (iii) Assuming f is continuous at x_0 , prove that

$$x_n \to x_0 \Rightarrow f(x_n) \to f(x_0).$$

[14]

(b) Prove that the function π : ℝ² → ℝ defined by π(x, y) = x is continuous when ℝ² and ℝ are equipped with their usual metrics. Is π uniformly continuous? Justify your answer.

QUESTION 5

- (a) When are two subsets A and B of a metric space said to be separated? [2]
- (b) Verify that two nonempty disjoint closed sets in a metric space are separated. [2]
- (c) Give two alternate definitions of connectedness of a subset M of a metric space X. [4]
- (d) (i) Prove that if X is a connected metric space and $f: X \longrightarrow \mathbb{R}$ is a continuous function, then f(X) is connected.
 - (ii) Deduce that if $f : [0,1] \longrightarrow [0,1]$ is continuous, then there exists an $x \in [0,1]$ such that f(x) = x. [12]

END OF EXAMINATION

(65