B.Sc. IV, BASS IV, B.Ed IV

Title of Paper	: Fluid Dynamis
Course Number	$:$ M455
Time Allowed	: Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been GIVEN BY THE INVIGILATOR.

USEFUL FORMULAE

The gradient of a function $\psi(r, \theta, z)$ in cylindrical coordinates is

$$
\nabla \psi=\frac{\partial \psi}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \hat{\theta}+\frac{\partial \psi}{\partial z} \hat{k}
$$

The divergence and curl of the vector field

$$
\underline{v}=v_{r} \hat{r}+v_{\theta} \hat{\theta}+v_{z} \hat{k}
$$

in cylindrical coordinates are

$$
\nabla \cdot \underline{v}=\frac{1}{r}\left\{\frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{\partial}{\partial \theta}\left(v_{\theta}\right)+\frac{\partial}{\partial z}\left(\dot{r} v_{z}\right)\right\}
$$

and

$$
\nabla \times \underline{v}=\frac{1}{r} \operatorname{det}\left[\begin{array}{ccc}
\hat{r} & r \hat{\theta} & \hat{k} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
v_{r} & r v_{\theta} & v_{z}
\end{array}\right]
$$

The divergence of a vector

$$
\underline{v}=v_{r} \hat{r}+v_{\lambda} \hat{\lambda}+v_{\theta} \hat{\theta}
$$

in spherical coordinates

$$
\nabla \cdot \underline{v}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} v_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial v_{\lambda}}{\partial \lambda}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta v_{\theta}\right)}{\partial \theta}
$$

The convective derivative and Laplacian in cylindrical coordinates are

$$
\begin{aligned}
& \frac{D}{D t}=\frac{\partial}{\partial t}+v_{r} \frac{\partial}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial}{\partial \theta}+v_{z} \frac{\partial}{\partial z} \\
& \nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}}
\end{aligned}
$$

Identities

$$
\begin{aligned}
\underline{v} \cdot \nabla \underline{v} & =\nabla\left(\frac{v^{2}}{2}\right)-\underline{v} \times \underline{\omega} \\
\nabla \times(\nabla \times \underline{a}) & =\nabla \nabla \cdot \underline{a}-\nabla^{2} \underline{a}
\end{aligned}
$$

SECTION A [40 Marks]: Answer ALL Questions

A1. Define a continuum model on example of air density.
A2. Describe the Lagrange method treating motion of continuum medium.
A3. Write down a mass conservation equation in general case.
A4. Prove $\bar{V}=\nabla \psi \times \bar{k}$ in the usual notations.
A5. Consider the flow field represented by the stream function $\psi(x, y)=10 x y+17$.
Is this flow
(a) Possible incompressible?
(b) irrotational?

A6. Explain the term $\sigma_{y y}$.
A7. Prove Archimedes' theorem.
A8. Write down Euler equation for inviscid model in operator form.
A9. Define
(a) Newtonian fluid;
(b) Similar flows.

A10. Consider steady, incompressible inviscid flow. Given

$$
\begin{equation*}
\bar{V} \times \bar{\omega}=\nabla\left(\frac{V^{2}}{2}+\Phi+\frac{p}{p}\right) \tag{4}
\end{equation*}
$$

in the usual notations. Derive Bernoulli's equation.

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]
B1. (a) For the velocity field

$$
\bar{V}=-a x \bar{i}+b y \bar{j},
$$

where a and b are positive constants, determine
(i) dimenstion of the flow;
(ii) whether the flow is steady;
(iii) equation for the streamline through point $(x, y)=(1,1)$; put $a=b=2$;
(iv) parametric equations for particle path located at $(x, y)=(2,1)$ at $t=0$.
(b) Derive formular for convective derivative of density.
(c) The component x of velocity in steady, incompressible flow field in the $x y$ plane 161 is $u=\frac{A}{x}$, where A is a constant.
Find the simplest y component of velocity for this flow field.

QUESTION B2 [20 Marks]

B2. (a) Consider the velocity field

$$
\bar{V}=A x y \bar{i}-\frac{1}{2} A y^{2} \bar{j}
$$

in the $x y$ plane.
(i) Is this possible incompressible flow field?
(ii) Calculate the acceleration of a fluid particle at a point $(x, y)=(2,1)$.
(b) The vorticity of a certain incompressible flow is given by

$$
\bar{\omega}= \begin{cases}-A r \sin \theta, & \text { for } r<a \tag{8}\\ 0, & \text { for } r>a\end{cases}
$$

Find the corresponding stream function.
(c) Consider two-dimenstional incompressible flow. Derive general formula for stream function.

QUESTION B3 [20 Marks]

B3. (a) Show that the pressure at a point of fluid is the same in all directions.
(b) Consider uniformly rotating liquid with angular velocity ω in the field of gravity.
(i) Construct equilibrium equations.
(ii) Find pressure $p(r, z)$.
(c) Write down the Navier-Stokes equations for compressible flow when density and viscosity are constants.

QUESTION B4 [20 Marks]

B4. (a) The velocity distribution in a two-dimensional steady inviscid flow in the $x y$ plane is

$$
\bar{V}=(A x-B) i+(C-A y) \bar{j}
$$

where $A=2, B=5$ and $C=3$, body force $\bar{g}=-g \bar{k}$.
(i) Is flow incompressible?
(ii) Obtain an expression for the pressure gradient.
(iii) Evaluate the difference in pressure between point $(x, y, z)=(1,3,0)$ and the origin if the density is 1.2 .
(b) The velocity distribution for laminar flow between fixed parallel plates is given by

$$
u=U\left[1-\left(\frac{2 y}{h}\right)^{2}\right]
$$

where h is the distance separating the plates and the origin is placed midway between the plates. Consider $\mu=1.1 \times 10^{-3} \mathrm{~kg} / \mathrm{ms}, U=0.05 \mathrm{~m} / \mathrm{s}, h=5 \mathrm{~mm}$. Calculate
(i) the shear stress on the lower plate and give direction;
(ii) the force on a $0.3 \mathrm{~m}^{2}$ section of the lower plate and give its direction.

QUESTION B5 [20 Marks]

B5. (a) Consider steady viscous incompressible flow between two stationary plates located at $y=0$ and $y=1$, Given that pressure at $x=0$ and $x=L$ is p_{0} and p_{L} respectively, with $p_{0}>p_{L}$. The effect of body forces is negligible.
(i) Put $\bar{V}=u(x, y) \bar{i}$ and simplify the Navier-Stokes equations to show that

$$
\frac{\partial p}{\partial x}=\mu \frac{\partial^{2} u}{\partial y^{2}}
$$

(ii) Show that

$$
p(x)=p_{0}-\frac{p_{o}-p_{L}}{L} x .
$$

(iii) Show that

$$
\begin{equation*}
u(y)=y(1-y) \frac{p_{o}-p_{L}}{2 \mu L} \tag{5,3,3}
\end{equation*}
$$

(b) Water flows steadily up a vertical 0.1m diameter pipe and out the mozzle, which is 0.05 m in diameter, discharging to atmospheric pressure. The stream velocity at the nozzle exit must be $20 \mathrm{~m} / \mathrm{s}$. The flow is frictiouless. The pipe is 4 m loug.
(i) Find velocity at inlet.
(ii) Caculate the gage pressure required at inlet.

