Supplementary Examination, 2013/2014

B.Sc. IV, BASS IV, B.Ed IV

Title of Paper	: Fluid Dynamics
Course Number	: M455
Time Allowed	$:$ Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been GIVEN BY THE INVIGLLATOR.

The gradient of a function $\psi(r, \theta, z)$ in cylindrical coordinates is

$$
\nabla \psi=\frac{\partial \psi}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \hat{\theta}+\frac{\partial \psi}{\partial z} \hat{k}
$$

The divergence and curl of the vector field

$$
\underline{v}=v_{r} \hat{r}+v_{\theta} \hat{\theta}+v_{z} \hat{k}
$$

in cylindrical coordinates are

$$
\nabla \cdot \underline{v}=\frac{1}{r}\left\{\frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{\partial}{\partial \theta}\left(v_{\theta}\right)+\frac{\partial}{\partial z}\left(r v_{z}\right)\right\}
$$

and

$$
\nabla \times \underline{v}=\frac{1}{r} \operatorname{det}\left[\begin{array}{ccc}
\hat{r} & r \hat{\theta} & \hat{k} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
v_{r} & r v_{\theta} & v_{z}
\end{array}\right]
$$

The divergence of a vector

$$
\underline{v}=v_{r} \hat{r}+v_{\lambda} \hat{\lambda}+v_{\theta} \hat{\theta}
$$

in spherical coordinates

$$
\nabla \cdot \underline{v}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} v_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial v_{\lambda}}{\partial \lambda}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta v_{\theta}\right)}{\partial \theta}
$$

The convective derivative and Laplacian in cylindrical coordinates are

$$
\begin{aligned}
& \frac{D}{D t}=\frac{\partial}{\partial t}+v_{r} \frac{\partial}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial}{\partial \theta}+v_{z} \frac{\partial}{\partial z} \\
& \nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}}
\end{aligned}
$$

Identities

$$
\begin{aligned}
\underline{v} \cdot \nabla \underline{v} & =\nabla\left(\frac{v^{2}}{2}\right)-\underline{v} \times \underline{\omega} \\
\nabla \times(\nabla \times \underline{a}) & =\nabla \nabla \cdot \underline{a}-\nabla^{2} \underline{a}
\end{aligned}
$$

SECTION A [40 Marks]: Answer ALL Questions 173
A1. Define
(a) Two-dimensional flow;
(b) steady flow;
(c) stagnation point;
(d) particle path.
A2. Describe the Euler method treating motion of continuum medium.
A3. Write down a formula for a Lagrangian acceleration.
A4. Prove $\bar{V}=\nabla \times \psi \bar{k}$ in the usual notations.
A5. A flow is represented by velocity

$$
\bar{V}=10 x \bar{i}-10 y \bar{j}+30 \bar{k} .
$$

Is this flow
(a) possible incompressible?
(b) irratational?
A6. Explain the term $\tau_{x y}$
A7. Prove Archimedes theorem.
A8. Write down Navier-Stakes equation for incompressible model of fluid.
A9. (a) Define Reynolds number;
(b) How the notion of the similar flows is used in experiments?
A10. Write down and comment on Bernoulli's equation.

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) For the velocity field

$$
\bar{V}=\frac{A}{x} \bar{i}+\frac{A y}{x^{2}} \bar{j}
$$

where A is a constant, determine
(i) dinension of the flow;
(ii) whether the flow is steady;
(iii) streamline through the point $(x, y)=(1,3)$, and $A=2$;
(iv) time required for the fluid particle to more from $x=1$ to $x=3$ in this flow field.
(b) Derive the formular for continuity equation (mass conservation).
(c) A uniform flow field \bar{V} is inclined at angle α above the x axis.
(i) Evaluate the velocity components u and v;
(ii) Determine the stream function for this flow field.

QUESTION B2 [20 Marks]

B2. (a) Consider the velocity field

$$
\bar{V}=x y^{2} \bar{i}-\frac{1}{3} y^{3} \bar{j}+x y \bar{k}
$$

(i) If it is a possible incompressible flow field?
(ii) Calculate the acceleration of a fluid particle at a point $(x, y, z)=(1,2,3)$.
(b) Consider the Rankine's Vortex

$$
\bar{\omega}= \begin{cases}\omega \bar{k}, & \text { for } r<a \\ 0, & \text { for } r>a\end{cases}
$$

(i) Find the stream function;
(ii) Find velocity V_{θ}
(c) Consider a line vortex

$$
v_{r}=0, \quad v_{\theta}=\frac{c}{r}
$$

(i) Find a stream function;
(ii) Find a circulation.

QUESTION B3 [20 Marks]

B3. (a) Consider a fluid at rest in the field of gravity. Show $\frac{d p}{d z}=-\rho g$ in the usual notations.
(b) Find the equation of the upper surface of the rotating fluid in the field of gravity.
(c) Define the Newtorian fluid.

B4. (a) In a frictionless flow the velocity is

$$
\bar{V}=A x \bar{i}-A y \bar{j}
$$

where A is a constant, and body force $\bar{g}=-g \bar{k}$. The pressure at $(x, y, z)=(0,0,0)$ is $p_{0}=0$
(i) Is flow incopressible?
(ii) Construct the Euler equations
(iii) Find pressure $p(x, y, z)$.
(b) The velocity distribution for laminar flow between fixed parallel plates is given by

$$
u=U\left[1-\left(\frac{2 y}{h}\right)^{2}\right]
$$

where h is the distance separating the plates and the origin is placed midway between the plates. Consider $\mu=1.1 \times 10^{-3} \mathrm{~kg} / \mathrm{ms}, \quad U=0.3 \mathrm{~m} / \mathrm{s}, \quad h=0.5 \mathrm{~mm}$. Calculate
(i) the shear stress on the upper plate and give direction;
(ii) the force on a $0.5 \mathrm{~m}^{2}$ section of the plate and give its direction.

QUESTION B5 [20 Marks]

B5. (a) (i) Derive the Navier-Stokes equation in dimensionless form, introducing the characteristic length and velocity. Neglect body forces.
(ii) Find dimension of Reynold's number.
(b) A u-tube acts as a water siphon. The bend in the tube is 1 m above the water surface; the tube outlet is 7 m below the water surface. The fluid issues from the bottom of siphon as a free jet at atmospheric pressure. If the flow is frictionsless, determine
(i) the speed of the free jet;
(ii) the absolute and the gage pressure of the fluid in the bend.

